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Abstract

Background: Peptide-spectrum matching is a common step in most data processing workflows for mass

spectrometry-based proteomics. Many algorithms and software packages, both free and commercial, have been

developed to address this task. However, these algorithms typically require the user to select instrument- and

sample-dependent parameters, such as mass measurement error tolerances and number of missed enzymatic

cleavages. In order to select the best algorithm and parameter set for a particular dataset, in-depth knowledge

about the data as well as the algorithms themselves is needed. Most researchers therefore tend to use default

parameters, which are not necessarily optimal.

Results: We have applied a new optimization framework for the Taverna scientific workflow management system

(http://ms-utils.org/Taverna_Optimization.pdf) to find the best combination of parameters for a given scientific

workflow to perform peptide-spectrum matching. The optimizations themselves are non-trivial, as demonstrated by

several phenomena that can be observed when allowing for larger mass measurement errors in sequence database

searches. On-the-fly parameter optimization embedded in scientific workflow management systems enables experts

and non-experts alike to extract the maximum amount of information from the data. The same workflows could be

used for exploring the parameter space and compare algorithms, not only for peptide-spectrum matching, but also

for other tasks, such as retention time prediction.

Conclusion: Using the optimization framework, we were able to learn about how the data was acquired as well as

the explored algorithms. We observed a phenomenon identifying many ammonia-loss b-ion spectra as peptides

with N-terminal pyroglutamate and a large precursor mass measurement error. These insights could only be gained

with the extension of the common range for the mass measurement error tolerance parameters explored by the

optimization framework.
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Background

In mass spectrometry based proteomics, whether

bottom-up, top-down, or middle-down [1], the matching

of a single tandem mass spectrum, or a spectral tree [2]

to a peptide is an integral part of most methods for iden-

tifying peptides and proteins. Existing methods fall into

one of three broad categories: sequence database

searches [3], spectral libraries [4–6] and de novo sequen-

cing [7]. Most recent methods can be applied to data

from collision-induced dissociation [8], electron capture

dissociation [9] or other fragmentation techniques,

individually or in combination [10, 11]. The identifica-

tion may be based on MS2, MS3 or a combination of

these. Several groups have also published efforts in com-

bining multiple algorithms for peptide-spectrum match-

ing, for instance the framework developed by Searle

et al. [12], the MSblender software from Kwon et al. [13]

or the FDRAnalysis algorithm of Wedge et al. [14].

Recently, in de Bruin et al. [15] and Mohammed et al.

[16] we have shown how some of these algorithms can

be integrated with other algorithms in scientific work-

flows [17]. Scientific workflows enable researchers to

concentrate on their research purpose rather than on

computational challenges. However, all these algorithms

use a number of user-defined input parameters, such as

the specificity and fidelity of the enzymatic digestion, the
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sequences or library to search spectra against, mass

measurement uncertainty or error (MME) and score or

probability thresholds in the assembly of peptide-

spectrum matches to peptide or protein sets. Typically,

the choice of algorithm and parameters is determined

from the users’ experience and expert knowledge about

the experiment, instrumentation and data quality. Pre-

viously, Piehowski et al. have used a “systematic trial-

and-error parameter selection” to optimize peptide

identification using SEQUEST [18], showing significant

improvement over using default search parameters.

Here we describe the usage of a framework [19] for

automated optimization of scientific workflows with

two very different analysis tasks: peptide-spectrum

matching and chromatographic retention time predic-

tion. The optimization process can be reproduced by

other researchers with the same or a different target

and workflows. One must ensure to install all required

applications, Taverna and the optimization plugin as de-

scribed at http://ms-utils.org/Taverna_Optimization.pdf.

Methods

Test samples and sequences

In this study, we used six representative datasets from

two different organisms and three different types of mass

analyzers. Three datasets were generated in our own lab

and three fetched from the PRIDE repository [20]. As a

prokaryote with a small genome and limited number of

modified peptides, we used an E. coli whole-cell lysate,

prepared as described by Mostovenko et al. [21]. This

sample was analyzed both by high-resolution TOF mass

spectrometer and in an ion trap. As a eukaryote with a

larger genome and frequent occurrence of modified

peptides, we used a sample of human plasma isolated

from blood drawn from a self-declared healthy individ-

ual after verbal informed consent according to local

guidelines approved by the Medical Ethics Committee at

the Leiden University Medical Center. The human

plasma sample was analyzed on the same ion trap as the

E. coli digest. The three additional datasets were down-

loaded from PRIDE were an orbitrap dataset from a

study of label-free absolute proteome quantification

methods using E. coli [22] (project PXD000283, dataset

#29781), an orbitrap dataset from glioma-derived cancer

stem cells [23] (PXD000563, file “GSC11_24h_R1.raw”)

and a TOF dataset of human induced pluripotent stem

cells [24] (PXD000071, “120118ry_201B7-32_2_2.wiff”).

These datasets cover three common types of mass ana-

lyzers with varying resolving power and mass measure-

ment accuracy as well as organisms with small and large

genomes. UniProt reference proteomes data for E. coli

(April 2013, 4,439 sequences and same number of decoys)

and H. sapiens (April 2013, 89,601 sequences including

isoforms and the same number of decoys) was used for

peptide identification using the X!Tandem [25] sequence

search engine.

Liquid chromatography – tandem mass spectrometry

The ion trap only datasets were generated as follows. Two

μL of each tryptic digest were loaded and desalted on a

300 μm-i.d. 5-mm PepMap C18 trap column (Dionex,

Sunnyvale, CA) and separated by reversed-phase liquid

chromatography using a 15-cm, 300 μm-i.d. ChromXP

C18 column (Eksigent, Dublin, CA) connected to a split-

less NanoLC-Ultra 2D plus system (Eksigent) with a linear

90-min gradient from 4 to 33 % acetonitrile in 0.05 %

formic acid and a constant flow rate of 4 μL/min. The LC

system was coupled to an amaZon ETD ion trap (Bruker

Daltonics, Bremen, Germany) via a CaptiveSpray™ ESI

source. After each MS scan, up to 10 abundant multiply

charged species in m/z 300-1300 were selected for MS/

MS and excluded for one minute after having been

selected twice for MS/MS. Each individual scan or tandem

mass spectrum was saved to disk. The LC system was

controlled by HyStar 3.2 and the ion trap by trapControl

7.0. To generate a hybrid TOF/ion trap dataset, the E. coli

digest was loaded and desalted as above, separated on a

15-cm, 75 μm-i.d PepMap C18 column in an Ultimate

3000 LC system (Thermo Scientific, Sunnyvale, CA) with

a 180-min 300 nL/min piece-wise linear gradient with the

following breakpoints: 2 % B at 0 and 10 min, 5 % B at

25 min, 25 % B at 165 min, 30 % B at 175 min and 35 % B

at 190 min, where B is 95 % acetonitrile and 0.1 %

formic acid. The LC system was coupled simultan-

eously to a maXis high-resolution-TOF (also Bruker)

and an amaZon speed ion trap using a post-column

flow splitter (RePlay™, Advion, Ithaca, NY), both with

the CaptiveSpray™ ESI source.

Optimization of the X!Tandem workflow

Scientific workflows are becoming more common in

large-scale proteomics data analysis [15, 26]. Some of

the authors already designed parts of the current use

case as scientific workflows within the Taverna workflow

management system. These workflows included the

decomposition of mass spectrometry data and peptide

identification via X!Tandem or SpectraST [27]. The

workflows were made highly parallel for an optimal exe-

cution in a cloud environment [16]. We extended the

X!Tandem workflow and shifted the computationally

intensive X!Tandem execution to the Grid using the

Taverna UNICORE plugin [28]. The X!Tandem workflow

is highlighted in Fig. 1 (The workflow can be downloaded at

http://www.myexperiment.org/workflows/3693.html) repre-

senting the following major steps: 1. decomposing the input

files, 2. database search by X!Tandem, 3. recomposing

the output files 4. statistical analysis of the result by

PeptideProphet and 5. modeling of chromatographic
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retention times using an optimum choice of training

set and prediction algorithm. This workflow can be used

for conventional execution and for the optimization

procedure in Taverna. The workflow in Fig. 1 is shown

from the optimization perspective, which integrates

graphical user interface elements for the optimization

specification and run. The perspective is provided by the

optimization framework [19] and partly more specifically

detailed by the respective optimization method plugin.

Figure 1 also illustrates that the workflow does not need

any modification for the usage in the optimization frame-

work. The optimization perspective offers different panels

that enable the user to: 1. define the sub-workflow for

optimization, 2. set optimization-specific values, 3. deter-

mine required input parameters, such as MMEs, and the

optimization target (which is represented by one output

port of the workflow) and 4. specify parameter data types,

ranges and dependencies (panels 2, 3 and 4 are provided

by the extended plugin). Using all these optimization

specification parameter, expert knowledge can be taken

into account during the optimization procedure to limit

the search space from the outset. Depending on the

runtime of one workflow execution and the total runtime

of a complete optimization, such limits are often required

to make optimization feasible. Additionally, some param-

eter combinations might be obviously useless, and should

be omitted. For the optimization of X!Tandem and Pepti-

deProphet only the highlighted workflow is used.

It is reasonable to assume the optimum MME toler-

ance for peptide-spectrum matching has some relation-

ship with the MME itself (Fig. 2a). An MME tolerance

window narrower than the MME distribution will discard

many potential peptide-spectrum matches (PSMs), while a

much broader window will fail to take advantage of high

mass measurement accuracy. The discrimination between

correct (true positive) and incorrect (false positive)

peptide-spectrum matches decreases the more sequences

a spectrum is matched against, as the score of the best

matching random (false positive) peptide increases with

the number of sequences searched. In the workflow opti-

mizations here we allowed both the maximum positive

and negative MMEs to vary between 0 and 25 Da for all

test datasets. The MMEs are not necessarily symmetric.

Often, mass spectrometers are not perfectly calibrated,

Fig. 1 The complete peptide matching and retention time workflow within the optimization perspective. We optimized the workflow in two

stages. The figure above shows the optimization of the X!Tandem peptide identification with following major steps: 1. decomposing the input

files, 2. database search by X!Tandem, 3. recomposing the output files 4. statistical analysis of the result by PeptideProphet and 5. modeling of

chromatographic retention times using an optimum choice of training set and prediction algorithm. The parts of the workflow, here the retention

time prediction, are made partially transparent as they were not part of the optimization within this stage. The bottom left window also shows the

dependency settings for the two input parameter MME+ and MME

Holl et al. BMC Bioinformatics  (2015) 16:284 Page 3 of 13



and a small but significant bias can be found after identify-

ing the peptides. In addition, the instrument sometimes

selects an isotopic peak other than the monoisotopic,

resulting in a systematic error of +1 or perhaps +2 Da.

We therefore allowed the maximum positive and negative

MME to be independently varied over the entire range

and the “isotope error” in X!Tandem. In this optimization

process, strict tryptic enzyme specificity was also assumed,

allowing for two missed cleavages. Carbamidomethylation

of cysteines was considered a fixed post-translational

modification in addition to the variable modifications

included by default, such as N-terminal pyroglutamate

from glutamine or glutamic acid. As we used the default

k-score with the TPP version of X!Tandem, the fragment

ion tolerances are not used in the scoring, which is based

on a dot product with a fixed bin size.

In X!Tandem and many other search engines, it is

possible to define not only a number of allowed missed

cleavage sites within a peptide, but also the fidelity of

the enzyme. The latter allows for zero or one of the

peptide termini not conforming to the enzymatic specifi-

city and are in X!Tandem referred to as “full” – strict

tryptic cleavage – meaning that both termini have to be

the result of tryptic cleavages unless the peptide is from

the protein N- or C-terminus, and “semi”, meaning that

only one site of the termini has to result from cleavage

by trypsin. In software such as Mascot, this is not an

independent parameter but implemented as a virtual

enzyme (“semiTrypsin”). In order to fully demonstrate

the advantage of the optimization framework, we

performed a second optimization on the E. coli ion trap

data, starting from the MME tolerance optimum, with

two additional parameters included in the optimization

process: the number of missed cleavages (integer ∈ [0, 4])

and the enzymatic fidelity defined by a Boolean represen-

ting’full’ (default) or’semi-tryptic’.

There are many methods available for finding the

optimum of a given function. One should take care if

using a method based on derivatives (numerical, as it is

not reasonable to find an analytical expression). For

instance, when allowing isotope errors (or “# 13C” in

Mascot), the derivative of the number of PSMs as a

function of the allowed MME is discontinuous where

the sum of the negative and positive error is 1 Da

(Fig. 2b). In search engines having only one MME toler-

ance parameter, i.e. the same positive and negative

maximum MME, this happens exactly at 0.5 Da max-

imum MME. This is easy to understand, as the two or

three searched mass windows become one, and the

window is expanding further along two edges rather

than four or six. There are also a number of discrete

variables that can be modified and that influence the

peptide-spectrum matching, for example isotope error,

missed cleavages, minimum and maximum peptide

length, and both fixed and variable post-translational

modifications. These parameters are often binary (isotope

error, included PTMs) but can sometimes take on any

integer value in a small range (peptide size, missed cleav-

ages, maximum number of variable PTMs per peptide).

Additionally, the choice of search algorithm itself can be

subject to optimization. Most database search engines

have equivalent parameters, such as MME, missed

cleavages, peptide size and considered PTMs. In order

to optimize the described parameters above, we use the

Taverna workflow optimization framework that em-

ploys an evolutionary algorithmto optimize multiple

continuous, discrete or binary parameters and find the

combination that gives the best global performance

Fig. 2 a Mass measurement error distribution (density at 1 %

PSM-level FDR) in the E. coli maXis TOF-amaZon ion trap dataset

(logarithmic scale) and (b) estimated number of identified correct 2+

spectra as function of MME tolerance in an X!Tandem search, using equal

positive and negative MME tolerances and allowing for “isotope error”

(dashed, red). When the gaps between the windows centered on each

isotope (i.e. 0, 1 and 2 Da) close, the number of 2+ PSMs gained per unit

MME (i.e. the derivative of the number of PSMs with respect to the MME)

drops drastically (blue)
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according to a user-defined target, or fitness function.

Here we use as fitness function the number of esti-

mated correct PSMs from doubly charged precursors

given by PeptideProphet using decoys and the non-

parametric model divided by the total number of

tandem mass spectra or the root-mean-square deviation

of predicted peptide retention time, as these are robust

and easily calculated metrics. We use the PSMs as they

are closer to the data and better represent discrete units

of information in a bottom-up proteomics experiment – in

quantitation by spectral counting for example – than the

perhaps biologically more relevant number of unique

peptides or proteome coverage. However, there is no

reason to assume that optimizing for the number of

PSMs would not also provide good parameters for

unique peptides and proteins.

The Taverna optimization framework used in this

paper offers a generic application programming interface

to extend Taverna with various types of optimization as

well as optimization algorithms. For non-linear and

partially discrete problems such as algorithms and simu-

lations used in scientific workflows, the fitness landscape

may be rugged and not assessable in many places. Prop-

erly dealing with these issues requires a robust and

versatile method, such as metaheuristic optimization.

The intrinsic parallelizability of such methods is a major

advantage in large optimization problems such as those

addressed here. Evolutionary algorithms are the parallel

metaheuristic of preference [29] and thus the optimization

pluginwe used in this paper was implemented with Evolu-

tionary Algorithms, in detail Genetic Algorithms (GA)

[30]. Additional motivations for using GAs are their sim-

plicity, proven performance, versatility and success in the

life sciences [31]. The plugin uses an existing Genetic-

Algorithm-library, JGAP [32], and was adapted to

workflow parameter optimization by coding each input

parameter as a “gene” on a “chromosome”, where each

chromosome contains a particular combination of input

parameters. In each generation, individual instances of the

workflow are executed; one for each chromosome (param-

eter set). After a user-defined number of generations or

other abort criteria, the framework presents the user with

the optimal or best parameter set found. Additional statis-

tics, which we will also use in this paper, can be saved after

the optimization phase. By using this generic optimization

framework and the extended parameter optimization plu-

gin, we obtain a better and more robust parameter set

than by using defaults or refining parameters by trial and

error. Additionally, there is no need for any prior know-

ledge about optimization techniques, as the framework

and plugin manage all aspects of the optimization. The

framework enables researchers to easily optimize scientific

workflows and thus increase the scientific output more

efficiently than using trial and error or parameter sweeps.

More information about the optimization framework, the

optimization process and other examples can be found at

http://ms-utils.org/Taverna_Optimization.pdf or [33].

All computing intensive executions (e.g. X!Tandem)

performed during the optimizations in this work were

conducted on a Grid that was set up by the Grid soft-

ware UNICORE [34]. The calculations were executed on

a cluster within the Grid with 206 compute nodes, each

of which consists of two 2.66 GHz Intel Xeon 6-core

processors and 96 GiB main memory. For the execution

on the Grid, 4 CPUs per job were requested by the user.

The scheduling and execution of the jobs were handled

by UNICORE, as described previously [28].

Optimization of retention time prediction

To illustrate a different type of optimization, comparing

not only parameters but also algorithms, we included a

retention time prediction in the workflow. The workflow

in Fig. 1, shown in grey was used for the optimization. It

can be accessed at http://www.myexperiment.org/work-

flows/3691.html. In addition to peptide-spectrum match-

ing, we may choose to incorporate additional information

about the peptides in the identification or removal of false

positives. One way to do this is to train a retention time

predictor and use this to remove peptides that do not fit

the predicted chromatographic behavior from the list of

peptide matches [35]. There are a number of algorithms

for this purpose, including the original software “rt” [35]

and two different algorithms included in the RTCalc utility

in TPP: one based on SSRCalc [36] and one based on the

artificial neural network (ANN) method by Petritis and

co-workers [37]. To demonstrate how a scientific

workflow can choose an optimal path for proteomics

data analysis, we designed a workflow to balance the

quality (FDR or PeptideProphet probability cutoff ) of

the training set and the prediction model, to find the

model that can best predict the retention times of

peptides within the same dataset. The rationale is that

the simpler retention time predictors have fewer free

parameters and will be trained more robustly by

smaller training sets than the potentially better but

more complex models requiring much more training

data. RTCalc has its own hardcoded internal quality

checks that generates an error message and aborts

rather than produce a poor or overfitted model. We

disabled these checks in the RTCalc source code to

level the playing field and allow the optimization

framework to independently find the right combin-

ation of parameters and algorithm. Alternatively, and

for increased robustness, the root-mean-square deviation

can be set to a very large (or small) value if RTCalc or rt

returns an error due to too few peptides or non-

convergence to avoid having the genetic algorithm explore

regions where no good solutions could be expected. In
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addition to the choice between the three algorithms, we

simultaneously optimized the PSM probability cutoff as

calculated by PeptideProphet for the peptides included in

the training sets. This workflow is shown as a stand-alone

workflow in Fig. 3 and is also embedded in Fig. 1. The

quality of the retention time prediction was evaluated as

root-mean-square deviation for 10 % of the peptides held

back as a validation set, using the remaining 90 % of the

peptides to train the model. These 10 % were then chosen

at random 10 times so that each peptide was used exactly

once for validation. The PSM probability cutoff for the

validation set was constant at p = 0.99. The result of this

optimization was then used in a downstream workflow

removing PSM outliers with measured retention time

deviating from the predicted retention time by more than

a user-defined absolute Z-score, here 2.0.

Results and discussion

Results of X!Tandem optimization

The optimum MME search windows found for the six

test datasets using the ranges for X!Tandem as described

above can be found in Tables 1 and 2. Remarkably, in

only one of these, the human orbitrap dataset, does the

optimum MME search window appear to directly

correspond to the mass measurement uncertainty of the

instrument (±0.01 Da). The optimum upper MME

(MME+) limits for both TOF datasets and the human

ion trap dataset as well as the lower MME (MME-)

limits for both ion trap datasets were between 5.3 and

9.0 Da. These correspond to 2.6–4.5m/z units for a

doubly charged peptide and are related to the widths of

the precursor ion selection window in the quadrupole or

ion trap rather than the mass measurement uncertainty.

Already in small MME tolerance windows (<1 Da), one

can observe such outliers that cannot be explained by

poor instrument performance, but are caused by a

second, co-eluting peptide in the same m/z window

as the peptide selected for MS/MS (Fig. 4). The selec-

tion window for MS/MS also does not have infinitely

sharp boundaries, but allows a fraction of ions

through, even if their m/z is just outside the window

as defined in the mass spectrometer control software.

This behavior results in a mixed tandem mass

spectrum with fragment ions from two or more

peptides. When the second, “freeriding” peptide pro-

duces more intense fragment ion peaks than the

selected peptide, the former peptide is more likely to

be identified, as long as it is within the searched mass

measurement window. This is especially true when

there is no penalty for MMEs, which is the case for

Sequest, Mascot, X!Tandem and a number of other

common search engines. Although retrospectively

making sense, we had not predicted that this effect

would dominate the benefit of searching a narrow m/

Fig. 3 Stand-alone workflow for retention time modeling and prediction. Each of the three embedded subworkflows corresponds to one

particular retention time model. The subworkflows can be switched on and off by a flag. In each workflow run, only one of the subworkflows is

executed. This flag was used as a parameter in the workflow optimization. Taverna workflows visualize workflow inputs by a red triangle and

outputs by a green triangle. This also holds for embedded (sub-)workflows
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z window corresponding to the actual MME for all

but one of the test datasets.

In all E. coli datasets we gain a number of these

peptide-spectrum matches when we allow MMEs of

5 Da compared to 0.5 Da (1,759 additional PSMs in the

ion trap dataset and 2,032 in the hybrid maXis/ion trap

dataset). Naïvely, one may assume that outside this

~5 Da window, no more true PSMs will be found by

stretching the search window further. However, this is

not the case. When expanding the search to allow

MMEs of up to 15 Da or more (plus isotope error of 1

or 2 Da), a number of new PSMs appear. These are

caused by the matching of theoretical spectra from pep-

tides with N-terminal pyroglutamate from glutamine or

glutamic acid with measured spectra of unmodified

peptides experiencing ammonia or water loss from the

N-terminal glutamine/glutamic acid during fragmenta-

tion. This shifts the b-ions by 17 (NH3) or 18 (H2O), in-

distinguishable from the difference between glutamine/

glutamic acid and pyroglutamate. As these are now iden-

tified as regular b-ions rather than b-ions with ammonia

(b*) or water (bo) loss, the peptide-spectrum match

receives a higher k-score by X!Tandem, bringing a num-

ber of these PSMs from just below to above the 1 %

FDR threshold, leading to a larger number of correct

PSMs (Fig. 5). Of course, a scoring scheme that gives

equal weight to b-, b*- and bo-ions and weighs in the

MME would still identify the (fully) correct peptide.

However, this is not the case in most common search

engines that allow arbitrarily large MMEs in the search.

This phenomenon shifts the global MME+ optimum to

17.6 Da and 15.0 Da for the ion trap and orbitrap E. coli

datasets respectively (Table 1) and produce local optima

along a ridge with MME+ 15–18 Da in the other data-

sets. In the orbitrap E. coli dataset searched with ±25 Da

MME tolerance and filtered for 1 % FDR by PeptidePro-

phet, there were also 371 PSMs with MME 15.98–16.02,

300 of which contained at least one methionine and 27

more at least one histidine or tryptophan. There were 22

PSMs with MME 16.98-17.02, 11 of which contained an

N-terminal glutamine, 483 PSMs with MME 17.98–18.02,

478 with N-terminal glutamic acid and 3 with N-terminal

glutamine, and 8 PSMs with MME 18.98–19.02, out of

which 7 contained an N-terminal glutamic acid. In total,

1,572 out of 16,668 PSMs in this search were found

outside the [-0.02, 2.02] MME window. Similar patterns

were observed for the other datasets. Extending the MME

tolerance to ±25 Da actually identifies more spectra (albeit

the difference is very small, 16,668 compared to 16,654)

than when searching the same dataset with X!Tandem

with the ±5 ppm MME tolerance (still allowing isotope

error) used in the originally published analysis of the

dataset [22].

As we make the mass error tolerance window larger,

we also retrieve more random, or false, peptides. The

score for the best matching random peptide increases

monotonously as a function of MME. In PeptideProphet,

this corresponds to a translation of the negative distribu-

tion to higher discriminant scores while the positive

distribution remains unchanged. At some point, the cost

of allowing better random matches will exceed the gain

of additional PSMs. In addition, searching a larger win-

dow is more computationally expensive, scaling roughly

linearly with the width of the error tolerance window.

Table 1 Results from the X!Tandem and PeptideProphet optimization of the six test datasets with information on number of unique

peptides and the optimal MME

Species Mass analyzer PSMs PSMs [M + 2H]2+ Unique opt. MME- opt. MME+ opt. PSMs opt. PSMs [M + 2H]2+ opt. unique

E. coli ion trap 12889 8393 1197 0.31 7.32 14057 (+9.1 %) 9260 (+10.3 %) 1296 (+8.3 %)

E. coli TOF 11285 9608 3840 5.57 17.62 13221 (+17.2 %) 11264 (+17.2 %) 4356 (+13.4 %)

E. coli orbitrap 18343 11129 7419 0.80 15.00 18548 (+1.1 %) 11366 (+2.1 %) 7526 (+1.4 %)

H. sapiens ion trap 8152 5316 528 9.02 5.32 8490 (+4.1 %) 5571 (+4.8 %) 577 (+9.3 %)

H. sapiens TOF 8650 5802 3835 0.31 6.33 8619 (-0.4 %) 5833 (+0.5 %) 4300 (+12.1 %)

H. sapiens orbitrap 17413 12239 4287 0.01 0.01 19551 (+12.3 %) 13772 (+12.5 %) 5164 (+20.5 %)

Table 2 Results from the X!Tandem and PeptideProphet optimization of the six test datasets with information on execution times

and the total time for the optimization

Dataset Runtime (def.) Runtime (opt.) Runtime (max) Optimization time

E. coli (ion trap) 00:01:17 00:07:11 00:34:03 04:58:32

E. coli (TOF) 00:06:42 00:09:56 00:14:03 04:07:15

E. coli (orbitrap) 00:08:08 00:08:30 00:09:45 03:09:40

H. sapiens (ion trap) 00:19:34 03:06:00 09:17:00 29:45:13

H. sapiens (TOF) 00:13:06 00:52:13 03:10:00 23:07:18

H. sapiens (orbitrap) 00:04:22 00:09:05 02:40:54 12:36:58
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The X!Tandem run time at the optimum varied from 7

to 10 min for the E. coli datasets and from 9 min to 3 h

for the human datasets (Table 2). Execution time and

computational cost were not explicitly considered in the

optimizations, and for datasets such as the human TOF

data used here, the relatively marginal improvement of

2.5 % additional PSMs may not motivate the 2.5 h add-

itional computational time, though all computationally

intensive components of these workflows have been

parallelized and can be run on clouds, grids or super-

computers [16]. As mentioned above, it is generally

recommended to run these database searches in parallel.

When considering the optimization runtime, the entire

computational cost consists of the sum of each workflow

run. The real runtime of an optimization process is

therefore the sum of the longest workflow execution

within each generation. For example, if in generation 1

the longest workflow execution took 10 min and in the

second generation 12 min, the total time for this

optimization was 22 min, with 40 workflows having been

executed in these two generations. This is feasible due to

the parallel execution mechanism implemented within

the optimization framework in Taverna. In any case, the

researcher should be aware of the required total

compute resources needed for the execution of the

workflows. Table 2 also lists the runtimes of the work-

flow using the default MME tolerances (±0.5 Da), the

maximum tolerances (±25 Da) and the optimum

Fig. 4 Peptide identifications from non-selected precursors. With larger MME tolerances, here ±5 Da plus isotope error, X!Tandem identified co-eluting

peptides with lower (a) or higher (b) m/z than the selected precursor but within the precursor isolation window. In A, a peptide with

monoisotopic m/z 842.5 was identified (with PeptideProphet probability cutoff p = 0.989) instead of a peptide (or signal) at m/z 845.3 triggering the

MS/MS event. In B, a peptide with m/z 814.0 is identified (with p = 0.992) instead of a peptide at m/z 811.5. Both precursors were the ninth to be

acquired out of ten sorted by intensity for their corresponding MS scans, more than 1.5 s after the MS scans themselves, and both precursors disappear

into the background in the subsequent MS scans. These are two examples of almost 100 such PSMs in the E. coli ion trap dataset
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window. The times required for the entire optimiza-

tions are also included, although the optimization

should only be required once for each combination

of sample type, instrument and method parameters.

Additionally, the time required to perform the spe-

cific optimization is given. Again, the researcher

should be aware that the actual times may be

dependent on the availability of the computing re-

sources and the queuing time.

The results from the second optimization including

missed cleavage sites and enzyme fidelity are shown

in Table 3. It is clear that allowing only one missed

cleavage is slightly better than allowing two missed

cleavages and that the default value for the specificity

(fully tryptic) was also the best value. The optimum

MME tolerances did not change dramatically. The im-

provement in fitness (fraction of identified 2+ spectra)

was less than 1 %, suggesting the initial values were

sensibly chosen. Additional parameters can easily be

included in the optimization process.

Results of retention time prediction optimization

As expected, the number of peptides in the training sets

used here were not sufficient to produce an accurate

model using the artificial neural network algorithm.

When there were more than ca. 70 peptides in the train-

ing set, the RTCalc coefficient (SSRCalc) model per-

formed best. When there were between 52 and 70

peptides, rt performed better, and for 21–52 peptides in

the training set, only rt produced a model at all. No

model was returned when having 21 peptides or fewer in

the training set. In absence of quality checks, the mini-

mum number of peptides required to produce a model

is solely determined by the number of free parameters

(terms) in the model. It is possible that for very large

training sets (>100,000 peptides), the ANN model will

outperform the SSRCalc-derived model in RTCalc [37].

The optimum algorithm, SSRCalc, was then selected for

use in a new workflow (Fig. 6a). A few outliers could be

removed from the E. coli ion trap X!Tandem results with

PeptideProphet p ≥ 0.95 and maximum absolute Z-score

Fig. 5 Optimization of MME window for X!Tandem on the hybrid ion trap/maXis dataset described above, with fitness defined at the number of

correctly identified spectra from doubly charged precursor divided by the total number of tandem mass spectra. The surface was interpolated

and visualized outside Taverna using gnuplot with the dgrid3d and countour base functions, although similar graphics could in the future

possibly also be created in an Rshell inside the Taverna workflow. The clearly visible ridge between 16 and 21 Da positive MME corresponds to

the pyroglutamate/ammonia loss resonance adding 437 peptide-spectrum matches (4 % of all PSMs) with 1 % FDR and MMEs 15-20 Da, nearly

all by assigning actual NH3-loss b-ions as regular b-ions with 17 Da MME. As comparison, there are only 9 PSMs in the MME window between 10

and 15 Da. Similar ridges are seen in at least four of the six datasets (supplemental information), although the global optimum is not always

found along this ridge. It should be noted that the standard error in the actual mass measurement is below 2 ppm in this dataset, but that this

number has very little relevance for the optimum MME window for X!Tandem in a search of this dataset with only one variable modification and

in a small sequence database

Table 3 Results from the second optimization, in which different numbers of missed cleavages and different enzyme fidelities were

also investigated for the E. coli hybrid ion trap/TOF data

PSMs PSMs [M + 2H]2+ Unique MME- MME+ Missed Fidelity

Default 14057 (+1.2 %) 9260 1292 (-1.9 %) 0.31 7.32 2 full

Optimized 13888 (-1.2 %) 9282 (+0.2 %) 1271 (-1.9 %) 0.28 7.17 1 full
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of 2, the most conspicuous having probabilities p < 0.99

or log10(1 - p) > -2 of being correct in the first place

(Fig. 6b).

Discussion

The two examples shown here demonstrate that system-

atic exploration of parameters and algorithms for data

analysis in mass spectrometry based proteomics can

achieve at least two things. First and foremost, re-

evaluating legacy parameter and model choices allows

more peptides and proteins to be identified, which may

allow more biologically relevant information to be

extracted from the raw mass spectrometry data. The

optimization should be done on a representative dataset,

or a fraction of all the spectra, for instance sampled

using random data decomposition [16]. Secondly, explor-

ing different combinations of parameters and algorithms

leads to new insight into the data and the algorithms

themselves – for example the ammonia loss b-ion spectra

identified as peptides with N-terminal pyroglutamate and

the behavior of the retention time predictors for different

size training sets. These phenomena were not chosen for

Fig. 6 Workflow using the best retention time predictor (SSRCalc in RTCalc) to filter a list of PSMs based on the agreement between measured

and predicted retention time, assuming the identification is correct (a). The user selects a Z-score threshold to remove outliers, which are likely

due to false identifications. Here we used a maximum absolute Z-score of 2 to demonstrate the workflow, although this may be overly conservative, as

a few PSMs of very high PeptideProphet probability are also removed (b). The workflow is available on myExperiment (workflow #4042)
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investigation, but uncovered during the parameter

optimization when allowing the parameters to vary over a

wide range. The optimum MME windows were found to

be asymmetric with a larger tolerance of positive MMEs.

In one dataset, the optimal positive MME was found along

the ridge (+17.62 Da) corresponding to the pyrogluta-

mate/NH3-loss PSMs. The other optimal MMEs were

found either just outside the actual mass measurement

errors (-0.31 or -0.50 Da) or just outside the MME corre-

sponding to the precursor isolation window as illustrated

in Fig. 4 (-5.57, +7.32 or +7.95 Da). Similar observations

were independently reported by three different groups at a

recent international conference [38–40], including data

from a Q Exactive Orbitrap [41]. The phenomenon makes

perfect sense given the distribution of MMEs observed

when allowing very large MMEs in the X!Tandem search,

with few PSMs with MMEs below -6 or between 8 and

15 Da. An important point here is that the genetic algo-

rithm searches a very large parameter space, and would

also be able to find an optimum very close to zero if one

exists for very accurate precursor mass measurements.

It is also important to be aware of a number of effects

that can mislead optimization procedures such as the

ones followed here. For some combination of parame-

ters, possibly very far from optimal, the PeptideProphet

expectation-maximization (EM) may fail to find the

globally best fit to the measured discriminant score

distribution. This can sometimes be explained by a noisy

discriminant score distribution, but sometimes the

PeptideProphet EM algorithm gets stuck in a local mini-

mum. We therefore settled for the target/decoy and the

non-parametric model of “2+” spectra in PeptidePro-

phet, as this does not fail over the range of parameters

investigated in this study, whereas it occasionally fails

for “1+” and “3+” spectra, especially when using the

parametric model. The optimum found should still be a

very good parameter choice for slightly different targets,

as roughly two thirds of the identifiable spectra are from

doubly charged precursors. The workflow feedback in

the form of parameter surfaces is helpful in visually val-

idating the optimization, and catching numbers returned

from a failed EM that are obviously erroneous (such as

identifying nearly 100 % of the spectra). Over smaller

ranges and for more or better data and algorithms, the

parametric model may still function sufficiently well for

use in optimization. A different optimization target, such

as the number of unique identified peptides, may theor-

etically produce a smaller optimum MME tolerance, as

many of the peptides identified in the larger windows,

such as the co-eluting peptides in Fig. 4, would have also

been selected for MS/MS and identified from different

spectra in the same dataset. However, it is good to

remember that random (false) matches tend to be to

unique peptides, and that optimizing for the number of

unique peptides or proteins will have a positive bias

toward spurious identifications.

The usage of the Taverna workflow management

system and the optimization framework produced only a

small overhead in this experiment. Even if scientific

workflows are still new in the proteomics field [15],

many researchers are already familiar with the usage of

scientific workflow management systems like Taverna.

As Taverna is implemented in Java, it can be executed as

a Java application without installation and thus typically

on every machine. With the Taverna graphical interface,

users can design their own workflows or reuse existing

ones from a repository [42]. Some workflows require

access to or installation of applications that will be called

by the workflow. Adaptation is sometimes needed in

order to run the workflows on one’s own machine. This

procedure is very dynamic in Taverna and cannot be

described in general. References and further literature

can be found at http://www.taverna.org.uk. The workflow

optimization plugin is designed as a standard Taverna plu-

gin and can be installed automatically by adding the down-

load page to Taverna (as described in http://ms-utils.org/

Taverna_Optimization.pdf). To enable the optimization

process on a workflow, a graphical user interface is offered

to select the sub-workflow, define termination criteria, and

specify parameters, along with their ranges and dependen-

cies. A modification of the workflow is not required for the

optimization. After the optimization process, the result is

presented to the user, who can store the entire optimization

process including execution statistics and other informa-

tion. For more detailed information on the optimization

plugin, please refer to [33].

Conclusion

We used a new optimization framework to optimize a

scientific workflow for peptide-spectrum matching and

retention time prediction. The two steps were optimized

separately from each other in the Taverna Workflow

Manager. With the optimization framework users can

optimize various parameters of any algorithm or tool

within a scientific workflow. In our use case we allowed

a much larger MME window for X!Tandem than typic-

ally used. With this setup we had been able to find new

PSMs outside of the commonly searched MME window.

These PSMs were primarily due to the unpredicted

matching of spectra from peptides with N-terminal

pyroglutamate from glutamine or glutamic acid with

measured spectra of unmodified peptides experiencing

ammonia or water loss from the N-terminal glutamine/

glutamic acid during fragmentation.

In conclusion, we suggest an open mind and perhaps a

more widely open search window is needed whenever

looking at data from new types of experiments or new

mass spectrometers. Scientific workflows, for example in
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Taverna, have many advantages for analysis of large

proteomics datasets, such as comprehension, shareabil-

ity, provenance, interfacing with cloud or grid comput-

ing. In combination with the Taverna optimization

framework, the workflow can then be optimized with

respect to parameters as well as algorithms, on-the-fly

and fully transparently. Additional search parameters

and exclusion criteria, such as minimum number of

peaks, minimum fragment m/z and minimum peptide

length, may also deserve investigation, although short

peptides tend to less protein-specific and therefore of

less value in practice.

Availability of supporting data

All software and workflows are freely available at http://

unicore-dev.zam.kfa-juelich.de/taverna/plugins/ and from

myExperiment.org. The installation and usage guide is

available at http://ms-utils.org/Taverna_Optimization.pdf.

At http://www.myexperiment.org/workflows/3693.html the

X!Tandem and PeptideProphet workflow is available. The

workflow for the retention time prediction optimization

can be accessed at http://www.myexperiment.org/work-

flows/3691.html. The liquid chromatography-tandem mass

spectrometry datasets produced in-house, including

the hybrid ion trap/maXis data, are available from

http://cpm.lumc.nl/export/public_datasets/.
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