000280906 001__ 280906
000280906 005__ 20210129221438.0
000280906 0247_ $$2doi$$a10.1039/C4CP04595E
000280906 0247_ $$2ISSN$$a1463-9076
000280906 0247_ $$2ISSN$$a1463-9084
000280906 0247_ $$2WOS$$aWOS:000346473600001
000280906 037__ $$aFZJ-2016-00617
000280906 041__ $$aEnglish
000280906 082__ $$a540
000280906 1001_ $$0P:(DE-Juel1)142384$$aWillenbockel, M.$$b0
000280906 245__ $$aThe interplay between interface structure, energy level alignment and chemical bonding strength at organic–metal interfaces
000280906 260__ $$aCambridge$$bRSC Publ.$$c2015
000280906 3367_ $$2DRIVER$$aarticle
000280906 3367_ $$2DataCite$$aOutput Types/Journal article
000280906 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1467702624_2697
000280906 3367_ $$2BibTeX$$aARTICLE
000280906 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000280906 3367_ $$00$$2EndNote$$aJournal Article
000280906 520__ $$aWhat do energy level alignments at metal–organic interfaces reveal about the metal–molecule bonding strength? Is it permissible to take vertical adsorption heights as indicators of bonding strengths? In this paper we analyse 3,4,9,10-perylene-tetracarboxylic acid dianhydride (PTCDA) on the three canonical low index Ag surfaces to provide exemplary answers to these questions. Specifically, we employ angular resolved photoemission spectroscopy for a systematic study of the energy level alignments of the two uppermost frontier states in ordered monolayer phases of PTCDA. Data are analysed using the orbital tomography approach. This allows the unambiguous identification of the orbital character of these states, and also the discrimination between inequivalent species. Combining this experimental information with DFT calculations and the generic Newns–Anderson chemisorption model, we analyse the alignments of highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO) with respect to the vacuum levels of bare and molecule-covered surfaces. This reveals clear differences between the two frontier states. In particular, on all surfaces the LUMO is subject to considerable bond stabilization through the interaction between the molecular π-electron system and the metal, as a consequence of which it also becomes occupied. Moreover, we observe a larger bond stabilization for the more open surfaces. Most importantly, our analysis shows that both the orbital binding energies of the LUMO and the overall adsorption heights of the molecule are linked to the strength of the chemical interaction between the molecular π-electron system and the metal, in the sense that stronger bonding leads to shorter adsorption heights and larger orbital binding energies.
000280906 536__ $$0G:(DE-HGF)POF3-141$$a141 - Controlling Electron Charge-Based Phenomena (POF3-141)$$cPOF3-141$$fPOF III$$x0
000280906 588__ $$aDataset connected to CrossRef
000280906 7001_ $$0P:(DE-HGF)0$$aLüftner, D.$$b1
000280906 7001_ $$0P:(DE-Juel1)139025$$aStadtmüller, B.$$b2
000280906 7001_ $$0P:(DE-HGF)0$$aKoller, G.$$b3
000280906 7001_ $$0P:(DE-Juel1)128774$$aKumpf, C.$$b4$$ufzj
000280906 7001_ $$0P:(DE-HGF)0$$aSoubatch, S.$$b5
000280906 7001_ $$0P:(DE-HGF)0$$aPuschnig, P.$$b6
000280906 7001_ $$0P:(DE-HGF)0$$aRamsey, M. G.$$b7
000280906 7001_ $$0P:(DE-HGF)0$$aTautz, F. S.$$b8$$eCorresponding author$$ufzj
000280906 773__ $$0PERI:(DE-600)1476244-4$$a10.1039/C4CP04595E$$gVol. 17, no. 3, p. 1530 - 1548$$n3$$p1530 - 1548$$tPhysical chemistry, chemical physics$$v17$$x1463-9084$$y2015
000280906 8564_ $$uhttps://juser.fz-juelich.de/record/280906/files/c4cp04595e.pdf$$yRestricted
000280906 8564_ $$uhttps://juser.fz-juelich.de/record/280906/files/c4cp04595e.gif?subformat=icon$$xicon$$yRestricted
000280906 8564_ $$uhttps://juser.fz-juelich.de/record/280906/files/c4cp04595e.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000280906 8564_ $$uhttps://juser.fz-juelich.de/record/280906/files/c4cp04595e.jpg?subformat=icon-180$$xicon-180$$yRestricted
000280906 8564_ $$uhttps://juser.fz-juelich.de/record/280906/files/c4cp04595e.jpg?subformat=icon-640$$xicon-640$$yRestricted
000280906 8564_ $$uhttps://juser.fz-juelich.de/record/280906/files/c4cp04595e.pdf?subformat=pdfa$$xpdfa$$yRestricted
000280906 909CO $$ooai:juser.fz-juelich.de:280906$$pVDB
000280906 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000280906 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS CHEM CHEM PHYS : 2014
000280906 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000280906 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000280906 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000280906 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000280906 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000280906 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000280906 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000280906 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000280906 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000280906 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000280906 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000280906 9141_ $$y2015
000280906 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128774$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000280906 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b8$$kFZJ
000280906 9131_ $$0G:(DE-HGF)POF3-141$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000280906 920__ $$lyes
000280906 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lFunktionale Nanostrukturen an Oberflächen$$x0
000280906 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000280906 980__ $$ajournal
000280906 980__ $$aVDB
000280906 980__ $$aI:(DE-Juel1)PGI-3-20110106
000280906 980__ $$aI:(DE-82)080009_20140620
000280906 980__ $$aUNRESTRICTED