000280913 001__ 280913
000280913 005__ 20210129221439.0
000280913 0247_ $$2doi$$a10.1021/jp5086262
000280913 0247_ $$2ISSN$$a1932-7447
000280913 0247_ $$2ISSN$$a1932-7455
000280913 0247_ $$2WOS$$aWOS:000347744700031
000280913 037__ $$aFZJ-2016-00624
000280913 041__ $$aEnglish
000280913 082__ $$a540
000280913 1001_ $$0P:(DE-HGF)0$$aNavarro, P.$$b0
000280913 245__ $$aElectron Energy Loss of Terrylene Deposited on Au(111): Vibrational and Electronic Spectroscopy
000280913 260__ $$aWashington, DC$$bSoc.$$c2015
000280913 3367_ $$2DRIVER$$aarticle
000280913 3367_ $$2DataCite$$aOutput Types/Journal article
000280913 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1467702803_2694
000280913 3367_ $$2BibTeX$$aARTICLE
000280913 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000280913 3367_ $$00$$2EndNote$$aJournal Article
000280913 520__ $$aWe have investigated the vibrational and electronic properties of terrylene by high-resolution electron energy-loss spectroscopy (HREELS), Fourier-transform infrared spectroscopy, and low-temperature single-molecule fluorescence spectroscopy. Terrylene thin films were sublimated in an ultrahigh vacuum on the Au(111) surface in order to record the HREEL spectra. Polycrystalline p-dichlorobenzene was used as a matrix to isolate a single terrylene molecule at 1.5 K and record its fluorescence spectrum. The infrared spectrum, the vibrational components from the fluorescence spectrum, and density functional theory calculations were used for the assignment and identification of the active modes found in HREELS. Finally, we report a loss signal around 17 000 cm–1 (2.1 eV) for the first singlet electronic excited state in agreement with optical spectroscopy. The HREEL spectra show both IR- and Raman-active vibration modes because of specific surface selection rules. Energy-loss spectroscopy could be used as a complementary technique to explore some other degrees of freedom that are not accessible by optical means.
000280913 536__ $$0G:(DE-HGF)POF3-141$$a141 - Controlling Electron Charge-Based Phenomena (POF3-141)$$cPOF3-141$$fPOF III$$x0
000280913 588__ $$aDataset connected to CrossRef
000280913 7001_ $$0P:(DE-HGF)0$$aBocquet, F. C.$$b1
000280913 7001_ $$0P:(DE-HGF)0$$aDeperasińska, I.$$b2
000280913 7001_ $$0P:(DE-Juel1)128784$$aPirug, G.$$b3$$ufzj
000280913 7001_ $$0P:(DE-HGF)0$$aTautz, F. S.$$b4$$ufzj
000280913 7001_ $$0P:(DE-HGF)0$$aOrrit, M.$$b5$$eCorresponding author
000280913 773__ $$0PERI:(DE-600)2256522-X$$a10.1021/jp5086262$$gVol. 119, no. 1, p. 277 - 283$$n1$$p277 - 283$$tThe @journal of physical chemistry <Washington, DC> / C$$v119$$x1932-7455$$y2015
000280913 8564_ $$uhttps://juser.fz-juelich.de/record/280913/files/jp5086262.pdf$$yRestricted
000280913 8564_ $$uhttps://juser.fz-juelich.de/record/280913/files/jp5086262.gif?subformat=icon$$xicon$$yRestricted
000280913 8564_ $$uhttps://juser.fz-juelich.de/record/280913/files/jp5086262.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000280913 8564_ $$uhttps://juser.fz-juelich.de/record/280913/files/jp5086262.jpg?subformat=icon-180$$xicon-180$$yRestricted
000280913 8564_ $$uhttps://juser.fz-juelich.de/record/280913/files/jp5086262.jpg?subformat=icon-640$$xicon-640$$yRestricted
000280913 8564_ $$uhttps://juser.fz-juelich.de/record/280913/files/jp5086262.pdf?subformat=pdfa$$xpdfa$$yRestricted
000280913 909CO $$ooai:juser.fz-juelich.de:280913$$pVDB
000280913 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000280913 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM C : 2014
000280913 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000280913 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000280913 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000280913 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000280913 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000280913 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000280913 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000280913 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000280913 9141_ $$y2015
000280913 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128784$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000280913 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b4$$kFZJ
000280913 9131_ $$0G:(DE-HGF)POF3-141$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000280913 920__ $$lyes
000280913 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lFunktionale Nanostrukturen an Oberflächen$$x0
000280913 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000280913 980__ $$ajournal
000280913 980__ $$aVDB
000280913 980__ $$aI:(DE-Juel1)PGI-3-20110106
000280913 980__ $$aI:(DE-82)080009_20140620
000280913 980__ $$aUNRESTRICTED