000280914 001__ 280914
000280914 005__ 20210129221439.0
000280914 0247_ $$2doi$$a10.1021/acsnano.5b03690
000280914 0247_ $$2ISSN$$a1936-0851
000280914 0247_ $$2ISSN$$a1936-086X
000280914 0247_ $$2WOS$$aWOS:000361935800056
000280914 0247_ $$2altmetric$$aaltmetric:4413474
000280914 0247_ $$2pmid$$apmid:26256407
000280914 037__ $$aFZJ-2016-00625
000280914 041__ $$aEnglish
000280914 082__ $$a540
000280914 1001_ $$0P:(DE-HGF)0$$aTelychko, Mykola$$b0
000280914 245__ $$aElectronic and Chemical Properties of Donor, Acceptor Centers in Graphene
000280914 260__ $$aWashington, DC$$bSoc.$$c2015
000280914 3367_ $$2DRIVER$$aarticle
000280914 3367_ $$2DataCite$$aOutput Types/Journal article
000280914 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1467702898_2694
000280914 3367_ $$2BibTeX$$aARTICLE
000280914 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000280914 3367_ $$00$$2EndNote$$aJournal Article
000280914 520__ $$aChemical doping is one of the most suitable ways of tuning the electronic properties of graphene and a promising candidate for a band gap opening. In this work we report a reliable and tunable method for preparation of high-quality boron and nitrogen co-doped graphene on silicon carbide substrate. We combine experimental (dAFM, STM, XPS, NEXAFS) and theoretical (total energy DFT and simulated STM) studies to analyze the structural, chemical, and electronic properties of the single-atom substitutional dopants in graphene. We show that chemical identification of boron and nitrogen substitutional defects can be achieved in the STM channel due to the quantum interference effect, arising due to the specific electronic structure of nitrogen dopant sites. Chemical reactivity of single boron and nitrogen dopants is analyzed using force–distance spectroscopy by means of dAFM.
000280914 536__ $$0G:(DE-HGF)POF3-141$$a141 - Controlling Electron Charge-Based Phenomena (POF3-141)$$cPOF3-141$$fPOF III$$x0
000280914 588__ $$aDataset connected to CrossRef
000280914 7001_ $$0P:(DE-HGF)0$$aMutombo, Pingo$$b1
000280914 7001_ $$0P:(DE-HGF)0$$aMerino, Pablo$$b2
000280914 7001_ $$0P:(DE-HGF)0$$aHapala, Prokop$$b3
000280914 7001_ $$0P:(DE-HGF)0$$aOndráček, Martin$$b4
000280914 7001_ $$0P:(DE-HGF)0$$aBocquet, François C.$$b5
000280914 7001_ $$0P:(DE-Juel1)157982$$aSforzini, Jessica$$b6$$ufzj
000280914 7001_ $$0P:(DE-HGF)0$$aStetsovych, Oleksandr$$b7
000280914 7001_ $$0P:(DE-HGF)0$$aVondráček, Martin$$b8
000280914 7001_ $$0P:(DE-HGF)0$$aJelínek, Pavel$$b9$$eCorresponding author
000280914 7001_ $$0P:(DE-HGF)0$$aŠvec, Martin$$b10
000280914 773__ $$0PERI:(DE-600)2383064-5$$a10.1021/acsnano.5b03690$$gVol. 9, no. 9, p. 9180 - 9187$$n9$$p9180 - 9187$$tACS nano$$v9$$x1936-086X$$y2015
000280914 8564_ $$uhttps://juser.fz-juelich.de/record/280914/files/acsnano%252E5b03690.pdf$$yRestricted
000280914 8564_ $$uhttps://juser.fz-juelich.de/record/280914/files/acsnano%252E5b03690.gif?subformat=icon$$xicon$$yRestricted
000280914 8564_ $$uhttps://juser.fz-juelich.de/record/280914/files/acsnano%252E5b03690.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000280914 8564_ $$uhttps://juser.fz-juelich.de/record/280914/files/acsnano%252E5b03690.jpg?subformat=icon-180$$xicon-180$$yRestricted
000280914 8564_ $$uhttps://juser.fz-juelich.de/record/280914/files/acsnano%252E5b03690.jpg?subformat=icon-640$$xicon-640$$yRestricted
000280914 8564_ $$uhttps://juser.fz-juelich.de/record/280914/files/acsnano%252E5b03690.pdf?subformat=pdfa$$xpdfa$$yRestricted
000280914 909CO $$ooai:juser.fz-juelich.de:280914$$pVDB
000280914 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157982$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000280914 9131_ $$0G:(DE-HGF)POF3-141$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000280914 9141_ $$y2015
000280914 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000280914 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS NANO : 2014
000280914 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bACS NANO : 2014
000280914 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000280914 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000280914 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000280914 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000280914 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000280914 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000280914 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000280914 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000280914 920__ $$lyes
000280914 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lFunktionale Nanostrukturen an Oberflächen$$x0
000280914 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000280914 980__ $$ajournal
000280914 980__ $$aVDB
000280914 980__ $$aI:(DE-Juel1)PGI-3-20110106
000280914 980__ $$aI:(DE-82)080009_20140620
000280914 980__ $$aUNRESTRICTED