001     280915
005     20210129221439.0
024 7 _ |a 10.1038/ncomms9287
|2 doi
024 7 _ |a 2128/9725
|2 Handle
024 7 _ |a WOS:000364920100001
|2 WOS
024 7 _ |a altmetric:4588309
|2 altmetric
024 7 _ |a pmid:26437297
|2 pmid
037 _ _ |a FZJ-2016-00626
041 _ _ |a English
082 _ _ |a 500
100 1 _ |0 P:(DE-Juel1)164597
|a Weiß, S.
|b 0
245 _ _ |a Exploring three-dimensional orbital imaging with energy-dependent photoemission tomography
260 _ _ |a London
|b Nature Publishing Group
|c 2015
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1467703007_2703
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Recently, it has been shown that experimental data from angle-resolved photoemission spectroscopy on oriented molecular films can be utilized to retrieve real-space images of molecular orbitals in two dimensions. Here, we extend this orbital tomography technique by performing photoemission initial state scans as a function of photon energy on the example of the brickwall monolayer of 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) on Ag(110). The overall dependence of the photocurrent on the photon energy can be well accounted for by assuming a plane wave for the final state. However, the experimental data, both for the highest occupied and the lowest unoccupied molecular orbital of PTCDA, exhibits an additional modulation attributed to final state scattering effects. Nevertheless, as these effects beyond a plane wave final state are comparably small, we are able, with extrapolations beyond the attainable photon energy range, to reconstruct three-dimensional images for both orbitals in agreement with calculations for the adsorbed molecule.
536 _ _ |0 G:(DE-HGF)POF3-141
|a 141 - Controlling Electron Charge-Based Phenomena (POF3-141)
|c POF3-141
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 0000-0001-8883-0495
|a Lüftner, D.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Ules, T.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Reinisch, E. M.
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Kaser, H.
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Gottwald, A.
|b 5
700 1 _ |0 P:(DE-Juel1)145046
|a Richter, M.
|b 6
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Soubatch, S.
|b 7
700 1 _ |0 P:(DE-HGF)0
|a Koller, G.
|b 8
700 1 _ |0 P:(DE-HGF)0
|a Ramsey, M. G.
|b 9
700 1 _ |0 P:(DE-Juel1)128791
|a Tautz, Frank Stefan
|b 10
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Puschnig, P.
|b 11
|e Corresponding author
773 _ _ |0 PERI:(DE-600)2553671-0
|a 10.1038/ncomms9287
|g Vol. 6, p. 8287 -
|p 8287 -
|t Nature Communications
|v 6
|x 2041-1723
|y 2015
856 4 _ |u https://juser.fz-juelich.de/record/280915/files/ncomms9287.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/280915/files/ncomms9287.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/280915/files/ncomms9287.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/280915/files/ncomms9287.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/280915/files/ncomms9287.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/280915/files/ncomms9287.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:280915
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)164597
|a Forschungszentrum Jülich GmbH
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)145046
|a Forschungszentrum Jülich GmbH
|b 6
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)128791
|a Forschungszentrum Jülich
|b 10
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-141
|1 G:(DE-HGF)POF3-140
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2015
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)1030
|2 StatID
|a DBCoverage
|b Current Contents - Life Sciences
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
915 _ _ |0 StatID:(DE-HGF)1040
|2 StatID
|a DBCoverage
|b Zoological Record
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b NAT COMMUN : 2014
915 _ _ |0 StatID:(DE-HGF)9910
|2 StatID
|a IF >= 10
|b NAT COMMUN : 2014
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0500
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)1060
|2 StatID
|a DBCoverage
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0560
|2 StatID
|a OpenAccess / APC funded
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-3-20110106
|k PGI-3
|l Funktionale Nanostrukturen an Oberflächen
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 1 _ |a UNRESTRICTED
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21