000280919 001__ 280919
000280919 005__ 20210129221440.0
000280919 0247_ $$2doi$$a10.1063/1.4936079
000280919 0247_ $$2ISSN$$a0034-6748
000280919 0247_ $$2ISSN$$a1089-7623
000280919 0247_ $$2WOS$$aWOS:000368594900038
000280919 0247_ $$2Handle$$a2128/16729
000280919 0247_ $$2altmetric$$aaltmetric:4457246
000280919 0247_ $$2pmid$$apmid:26724036
000280919 037__ $$aFZJ-2016-00630
000280919 041__ $$aEnglish
000280919 082__ $$a530
000280919 1001_ $$0P:(DE-Juel1)162163$$aLüpke, F.$$b0$$eCorresponding author$$ufzj
000280919 245__ $$aScanning tunneling potentiometry implemented into a multi-tip setup by software
000280919 260__ $$a[S.l.]$$bAmerican Institute of Physics$$c2015
000280919 3367_ $$2DRIVER$$aarticle
000280919 3367_ $$2DataCite$$aOutput Types/Journal article
000280919 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1453470359_7965
000280919 3367_ $$2BibTeX$$aARTICLE
000280919 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000280919 3367_ $$00$$2EndNote$$aJournal Article
000280919 520__ $$aWe present a multi-tip scanning tunneling potentiometry technique that can be implemented into existing multi-tip scanning tunneling microscopes without installation of additional hardware. The resulting setup allows flexible in situ contacting of samples under UHV conditions and subsequent measurement of the sample topography and local electric potential with resolution down to Å and μV, respectively. The performance of the potentiometry feedback is demonstrated by thermovoltage measurements on the Ag/Si(111)−(3√×3√)R30∘Ag/Si(111)−(3×3)R30∘surface by resolving a standing wave pattern. Subsequently, the ability to map the local transport field as a result of a lateral current through the sample surface is shown on Ag/Si(111)−(3√×3√)R30∘Ag/Si(111)−(3×3)R30∘ and Si(111) − (7 × 7) surfaces.
000280919 536__ $$0G:(DE-HGF)POF3-141$$a141 - Controlling Electron Charge-Based Phenomena (POF3-141)$$cPOF3-141$$fPOF III$$x0
000280919 588__ $$aDataset connected to CrossRef
000280919 7001_ $$0P:(DE-Juel1)138943$$aKorte, S.$$b1$$ufzj
000280919 7001_ $$0P:(DE-Juel1)128762$$aCherepanov, V.$$b2$$ufzj
000280919 7001_ $$0P:(DE-Juel1)128794$$aVoigtländer, Bert$$b3$$ufzj
000280919 773__ $$0PERI:(DE-600)1472905-2$$a10.1063/1.4936079$$gVol. 86, no. 12, p. 123701 -$$n12$$p123701 -$$tReview of scientific instruments$$v86$$x1089-7623$$y2015
000280919 8564_ $$uhttps://juser.fz-juelich.de/record/280919/files/1.4936079-1.pdf$$yOpenAccess
000280919 8564_ $$uhttps://juser.fz-juelich.de/record/280919/files/1.4936079-1.gif?subformat=icon$$xicon$$yOpenAccess
000280919 8564_ $$uhttps://juser.fz-juelich.de/record/280919/files/1.4936079-1.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000280919 8564_ $$uhttps://juser.fz-juelich.de/record/280919/files/1.4936079-1.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000280919 8564_ $$uhttps://juser.fz-juelich.de/record/280919/files/1.4936079-1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000280919 909CO $$ooai:juser.fz-juelich.de:280919$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000280919 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000280919 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000280919 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bREV SCI INSTRUM : 2014
000280919 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000280919 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000280919 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000280919 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000280919 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000280919 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000280919 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000280919 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000280919 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000280919 9141_ $$y2015
000280919 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162163$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000280919 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138943$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000280919 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128762$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000280919 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128794$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000280919 9131_ $$0G:(DE-HGF)POF3-141$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000280919 920__ $$lyes
000280919 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lFunktionale Nanostrukturen an Oberflächen$$x0
000280919 980__ $$ajournal
000280919 980__ $$aVDB
000280919 980__ $$aUNRESTRICTED
000280919 980__ $$aI:(DE-Juel1)PGI-3-20110106
000280919 9801_ $$aFullTexts