001     280921
005     20210129221440.0
024 7 _ |2 doi
|a 10.1063/1.4936975
024 7 _ |2 ISSN
|a 0034-6748
024 7 _ |2 ISSN
|a 1089-7623
024 7 _ |2 WOS
|a WOS:000368594900040
024 7 _ |2 Handle
|a 2128/16728
037 _ _ |a FZJ-2016-00632
041 _ _ |a English
082 _ _ |a 530
100 1 _ |0 0000-0001-5343-4062
|a Morawski, Ireneusz
|b 0
245 _ _ |a Combined frequency modulated atomic force microscopy and scanning tunneling microscopy detection for multi-tip scanning probe microscopy applications
260 _ _ |a [S.l.]
|b American Institute of Physics
|c 2015
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1467703701_2699
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a A method which allows scanning tunneling microscopy(STM) tip biasing independent of the sample bias during frequency modulated atomic force microscopy(AFM) operation is presented. The AFM sensor is supplied by an electronic circuit combining both a frequency shift signal and a tunneling current signal by means of an inductive coupling. This solution enables a control of the tip potential independent of the sample potential. Individual tip biasing is specifically important in order to implement multi-tip STM/AFM applications. An extensional quartz sensor (needle sensor) with a conductive tip is applied to record simultaneously topography and conductivity of the sample. The high resonance frequency of the needle sensor (1 MHz) allows scanning of a large area of the surface being investigated in a reasonably short time. A recipe for the amplitude calibration which is based only on the frequency shift signal and does not require the tip being in contact is presented. Additionally, we show spectral measurements of the mechanical vibration noise of the scanning system used in the investigations.
536 _ _ |0 G:(DE-HGF)POF3-141
|a 141 - Controlling Electron Charge-Based Phenomena (POF3-141)
|c POF3-141
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-Juel1)144810
|a Spiegelberg, Richard
|b 1
|e Corresponding author
700 1 _ |0 P:(DE-Juel1)138943
|a Korte, Stefan
|b 2
|u fzj
700 1 _ |0 P:(DE-Juel1)128794
|a Voigtländer, Bert
|b 3
|u fzj
773 _ _ |0 PERI:(DE-600)1472905-2
|a 10.1063/1.4936975
|g Vol. 86, no. 12, p. 123703 -
|n 12
|p 123703 -
|t Review of scientific instruments
|v 86
|x 1089-7623
|y 2015
856 4 _ |u https://juser.fz-juelich.de/record/280921/files/1.4936975.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/280921/files/1.4936975.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/280921/files/1.4936975.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/280921/files/1.4936975.jpg?subformat=icon-700
|x icon-700
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/280921/files/1.4936975.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:280921
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)144810
|a Forschungszentrum Jülich GmbH
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)138943
|a Forschungszentrum Jülich GmbH
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)128794
|a Forschungszentrum Jülich GmbH
|b 3
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-141
|1 G:(DE-HGF)POF3-140
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2015
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)1160
|2 StatID
|a DBCoverage
|b Current Contents - Engineering, Computing and Technology
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b REV SCI INSTRUM : 2014
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-3-20110106
|k PGI-3
|l Funktionale Nanostrukturen an Oberflächen
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21