000280923 001__ 280923
000280923 005__ 20210129221441.0
000280923 0247_ $$2doi$$a10.1016/j.susc.2015.06.016
000280923 0247_ $$2ISSN$$a0039-6028
000280923 0247_ $$2ISSN$$a0167-2584
000280923 0247_ $$2ISSN$$a1878-1047
000280923 0247_ $$2ISSN$$a1879-2758
000280923 0247_ $$2WOS$$aWOS:000366790700017
000280923 037__ $$aFZJ-2016-00634
000280923 041__ $$aEnglish
000280923 082__ $$a540
000280923 1001_ $$0P:(DE-HGF)0$$aBraatz, C. R.$$b0$$eCorresponding author
000280923 245__ $$aSwitching orientation of adsorbed molecules: Reverse domino on a metal surface
000280923 260__ $$aAmsterdam$$bElsevier$$c2016
000280923 3367_ $$2DRIVER$$aarticle
000280923 3367_ $$2DataCite$$aOutput Types/Journal article
000280923 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1470384222_25803
000280923 3367_ $$2BibTeX$$aARTICLE
000280923 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000280923 3367_ $$00$$2EndNote$$aJournal Article
000280923 520__ $$aA thus far unknown phase of 1,4,5,8-naphthalene-tetracarboxylic dianhydride (NTCDA) on Ag(111), characterized by an all perpendicular orientation of the planar molecules and bound to the Ag substrate through the carboxyl oxygen atoms has been identified using infrared absorption spectroscopy and scanning tunneling microscopy. Its formation process requires second layer NTCDA to squeeze into empty spaces between relaxed monolayer NTCDA molecules. Remarkably, this process causes initially parallel oriented NTCDA to likewise adopt the new, highly inclined adsorption geometry. According to our SPA-LEED and STM findings, the new phase displays a distinct long range order and shows a pronounced tendency to form 1D rows or narrow islands. We suggest that extra NTCDA preferentially transforms into the upright configuration close to existing islands and attaches to them, i.e. the transformation process proceeds in a directed and recurrent manner (reverse domino scenario). Identical processing starting with a compressed NTCDA/Ag(111) monolayer leads to a purely parallel oriented bilayer, that is, the NTCDA monolayer phase is retained and merely acts as a passive template for bilayer NTCDA. The new vertical NTCDA phase represents an unusual molecular system with π–orbitals oriented parallel to a metal surface. A substantially reduced coupling of these orbitals to Ag(111) electronic levels is conjectured, which will have a major impact on intermolecular couplings and electronically excited state lifetimes.
000280923 536__ $$0G:(DE-HGF)POF3-141$$a141 - Controlling Electron Charge-Based Phenomena (POF3-141)$$cPOF3-141$$fPOF III$$x0
000280923 588__ $$aDataset connected to CrossRef
000280923 7001_ $$0P:(DE-Juel1)156533$$aEsat, T.$$b1
000280923 7001_ $$0P:(DE-Juel1)140276$$aWagner, C.$$b2
000280923 7001_ $$0P:(DE-Juel1)128792$$aTemirov, R.$$b3
000280923 7001_ $$0P:(DE-Juel1)128791$$aTautz, Frank Stefan$$b4$$ufzj
000280923 7001_ $$0P:(DE-HGF)0$$aJakob, P.$$b5
000280923 773__ $$0PERI:(DE-600)1479030-0$$a10.1016/j.susc.2015.06.016$$gVol. 643, p. 98 - 107$$p98 - 107$$tSurface science$$v643$$x0039-6028$$y2016
000280923 8564_ $$uhttps://juser.fz-juelich.de/record/280923/files/1-s2.0-S0039602815001740-main.pdf$$yRestricted
000280923 8564_ $$uhttps://juser.fz-juelich.de/record/280923/files/1-s2.0-S0039602815001740-main.gif?subformat=icon$$xicon$$yRestricted
000280923 8564_ $$uhttps://juser.fz-juelich.de/record/280923/files/1-s2.0-S0039602815001740-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000280923 8564_ $$uhttps://juser.fz-juelich.de/record/280923/files/1-s2.0-S0039602815001740-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000280923 8564_ $$uhttps://juser.fz-juelich.de/record/280923/files/1-s2.0-S0039602815001740-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000280923 8564_ $$uhttps://juser.fz-juelich.de/record/280923/files/1-s2.0-S0039602815001740-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000280923 909CO $$ooai:juser.fz-juelich.de:280923$$pVDB
000280923 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000280923 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSURF SCI : 2014
000280923 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000280923 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000280923 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000280923 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000280923 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000280923 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000280923 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000280923 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000280923 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000280923 9141_ $$y2016
000280923 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156533$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000280923 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140276$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000280923 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128792$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000280923 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b4$$kFZJ
000280923 9131_ $$0G:(DE-HGF)POF3-141$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000280923 920__ $$lyes
000280923 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lFunktionale Nanostrukturen an Oberflächen$$x0
000280923 980__ $$ajournal
000280923 980__ $$aVDB
000280923 980__ $$aI:(DE-Juel1)PGI-3-20110106
000280923 980__ $$aUNRESTRICTED