000281016 001__ 281016
000281016 005__ 20220930130056.0
000281016 0247_ $$2doi$$a10.1002/adfm.201500825
000281016 0247_ $$2ISSN$$a1057-9257
000281016 0247_ $$2ISSN$$a1099-0712
000281016 0247_ $$2ISSN$$a1616-301X
000281016 0247_ $$2ISSN$$a1616-3028
000281016 0247_ $$2WOS$$aWOS:000363685900003
000281016 037__ $$aFZJ-2016-00727
000281016 041__ $$aEnglish
000281016 082__ $$a620
000281016 1001_ $$0P:(DE-Juel1)158062$$aMenzel, Stephan$$b0$$eCorresponding author$$ufzj
000281016 245__ $$aPhysics of the Switching Kinetics in Resistive Memories
000281016 260__ $$aWeinheim$$bWiley-VCH$$c2015
000281016 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1453363093_2885
000281016 3367_ $$2DataCite$$aOutput Types/Journal article
000281016 3367_ $$00$$2EndNote$$aJournal Article
000281016 3367_ $$2BibTeX$$aARTICLE
000281016 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000281016 3367_ $$2DRIVER$$aarticle
000281016 520__ $$aMemristive cells based on different physical effects, that is, phase change, valence change, and electrochemical processes, are discussed with respect to their potential to overcome the voltage–time dilemma that is crucial for an application in storage devices. Strongly non-linear switching kinetics are required, spanning more than 15 orders of magnitude in time. Temperature-driven and field-driven crystallization, threshold switching, ion migration, as well as redox reactions at interfaces are identified as relevant mechanisms. In phase change materials the combination of a reversible threshold switching and extremely large crystal growth velocities at high voltages enables ultra-fast resistive switching whereas lower voltages will not be sufficient to overcome the energy barrier for crystallization. In electrochemical cells it depends on the voltage regime, which mechanism is the rate-determining one for switching. While electro-crystallization dominates at low voltages, electron transfer in the medium voltage range and a mixture of electron transfer and ion migration at high voltages. In valence change materials, ion migration is found to be accelerated by a combined effect of electric field and local temperature increase due to Joule heating. All discussed types of resistive switches can provide sufficient non-linearity of switching kinetics for overcoming the voltage time dilemma.
000281016 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000281016 588__ $$aDataset connected to CrossRef
000281016 7001_ $$0P:(DE-HGF)0$$aBöttger, Ulrich$$b1
000281016 7001_ $$0P:(DE-HGF)0$$aWimmer, Martin$$b2
000281016 7001_ $$0P:(DE-HGF)0$$aSalinga, Martin$$b3
000281016 773__ $$0PERI:(DE-600)2039420-2$$a10.1002/adfm.201500825$$gVol. 25, no. 40, p. 6306 - 6325$$n40$$p6306 - 6325$$tAdvanced functional materials$$v25$$x1616-301X$$y2015
000281016 8767_ $$92015-05-12$$d2015-05-13$$eOther$$jZahlung erfolgt$$zBildrechte-Originalartikel: Interrelation of Sweep and Pulse Analysis of the SET Process in SrTiO3 Resistive Switching Memories
000281016 909CO $$ooai:juser.fz-juelich.de:281016$$pOpenAPC$$pVDB$$popenCost
000281016 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158062$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000281016 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000281016 9141_ $$y2015
000281016 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000281016 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000281016 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV FUNCT MATER : 2014
000281016 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bADV FUNCT MATER : 2014
000281016 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000281016 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000281016 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000281016 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000281016 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000281016 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000281016 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000281016 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000281016 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000281016 980__ $$ajournal
000281016 980__ $$aVDB
000281016 980__ $$aUNRESTRICTED
000281016 980__ $$aI:(DE-Juel1)PGI-7-20110106
000281016 980__ $$aAPC