001     281037
005     20220930130056.0
024 7 _ |a 10.1038/srep17908
|2 doi
024 7 _ |a 2128/9738
|2 Handle
024 7 _ |a WOS:000368330900001
|2 WOS
024 7 _ |a altmetric:5011089
|2 altmetric
024 7 _ |a pmid:26783049
|2 pmid
037 _ _ |a FZJ-2016-00748
041 _ _ |a English
082 _ _ |a 000
100 1 _ |a Dick, Markus
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Trading off stability against activity in extremophilic aldolases
260 _ _ |a London
|c 2016
|b Nature Publishing Group
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1458138996_32440
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Understanding enzyme stability and activity in extremophilic organisms is of great biotechnological interest, but many questions are still unsolved. Using 2-deoxy-D-ribose-5-phosphate aldolase (DERA) as model enzyme, we have evaluated structural and functional characteristics of different orthologs from psychrophilic, mesophilic and hyperthermophilic organisms. We present the first crystal structures of psychrophilic DERAs, revealing a dimeric organization resembling their mesophilic but not their thermophilic counterparts. Conversion into monomeric proteins showed that the native dimer interface contributes to stability only in the hyperthermophilic enzymes. Nevertheless, introduction of a disulfide bridge in the interface of a psychrophilic DERA did confer increased thermostability, suggesting a strategy for rational design of more durable enzyme variants. Constraint network analysis revealed particularly sparse interactions between the substrate pocket and its surrounding α-helices in psychrophilic DERAs, which indicates that a more flexible active center underlies their high turnover numbers.
536 _ _ |a 581 - Biotechnology (POF3-581)
|0 G:(DE-HGF)POF3-581
|c POF3-581
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Weiergräber, Oliver H.
|0 P:(DE-Juel1)131988
|b 1
|u fzj
700 1 _ |a Classen, Thomas
|0 P:(DE-Juel1)128890
|b 2
|u fzj
700 1 _ |a Bisterfeld, Carolin
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Bramski, Julia
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Gohlke, Holger
|0 P:(DE-HGF)0
|b 5
|e Corresponding author
700 1 _ |a Pietruszka, Jörg
|0 P:(DE-Juel1)128906
|b 6
|e Corresponding author
|u fzj
773 _ _ |a 10.1038/srep17908
|g Vol. 6, p. 17908 -
|0 PERI:(DE-600)2615211-3
|p 17908 -
|t Scientific reports
|v 6
|y 2016
|x 2045-2322
856 4 _ |u https://juser.fz-juelich.de/record/281037/files/srep17908.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/281037/files/srep17908.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/281037/files/srep17908.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/281037/files/srep17908.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/281037/files/srep17908.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/281037/files/srep17908.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:281037
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Heinrich-Heine-Universität Düsseldorf
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-Juel1)140595
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131988
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)128890
910 1 _ |a Heinrich-Heine-Universität Düsseldorf
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-Juel1)156323
910 1 _ |a Heinrich-Heine-Universität Düsseldorf
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Heinrich-Heine-Universität Düsseldorf
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)128906
910 1 _ |a Heinrich-Heine-Universität Düsseldorf
|0 I:(DE-HGF)0
|b 6
|6 P:(DE-Juel1)128906
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-581
|2 G:(DE-HGF)POF3-500
|v Biotechnology
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI REP-UK : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b SCI REP-UK : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IBOC-20090406
|k IBOC
|l Institut für Bioorganische Chemie (HHUD)
|x 0
920 1 _ |0 I:(DE-Juel1)IBG-1-20101118
|k IBG-1
|l Biotechnologie
|x 1
920 1 _ |0 I:(DE-Juel1)ICS-6-20110106
|k ICS-6
|l Strukturbiochemie
|x 2
980 1 _ |a UNRESTRICTED
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBOC-20090406
980 _ _ |a I:(DE-Juel1)IBG-1-20101118
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
980 _ _ |a UNRESTRICTED
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IBI-7-20200312
981 _ _ |a I:(DE-Juel1)IBG-1-20101118
981 _ _ |a I:(DE-Juel1)ICS-6-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21