001     281043
005     20210129221610.0
024 7 _ |a 10.1177/0022034515586769
|2 doi
024 7 _ |a 0022-0345
|2 ISSN
024 7 _ |a 1544-0591
|2 ISSN
024 7 _ |a WOS:000358182000013
|2 WOS
024 7 _ |a altmetric:4227540
|2 altmetric
024 7 _ |a pmid:26116492
|2 pmid
037 _ _ |a FZJ-2016-00754
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Xiao, Y.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Hydroxyapatite Growth Inhibition Effect of Pellicle Statherin Peptides
260 _ _ |a Thousand Oaks, Calif.
|c 2015
|b Sage
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1453472041_7970
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a In our recent studies, we have shown that in vivo–acquired enamel pellicle is a sophisticated biological structure containing a significant portion of naturally occurring salivary peptides. From a functional aspect, the identification of peptides in the acquired enamel pellicle is of interest because many salivary proteins exhibit functional domains that maintain the activities of the native protein. Among the in vivo–acquired enamel pellicle peptides that have been newly identified, 5 peptides are derived from statherin. Here, we assessed the ability of these statherin pellicle peptides to inhibit hydroxyapatite crystal growth. In addition, atomistic molecular dynamics (MD) simulations were performed to better understand the underlying physical mechanisms of hydroxyapatite growth inhibition. A microplate colorimetric assay was used to quantify hydroxyapatite growth. Statherin protein, 5 statherin-derived peptides, and a peptide lacking phosphate at residues 2 and 3 were analyzed. Statherin peptide phosphorylated on residues 2 and 3 indicated a significant inhibitory effect when compared with the 5 other peptides (P < 0.05). MD simulations showed a strong affinity and fast adsorption to hydroxyapatite for phosphopeptides, whereas unphosphorylated peptides interacted weakly with the hydroxyapatite. Our data suggest that the presence of a covalently linked phosphate group (at residues 2 and 3) in statherin peptides modulates the effect of hydroxyapatite growth inhibition. This study provides a mechanism to account for the composition and function of acquired enamel pellicle statherin peptides that will contribute as a base for the development of biologically stable and functional synthetic peptides for therapeutic use against dental caries and/or periodontal disease.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Karttunen, M.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Jalkanen, J.
|0 P:(DE-Juel1)156431
|b 2
|u fzj
700 1 _ |a Mussi, M. C. M.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Liao, Y.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Grohe, B.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Lagugne-Labarthet, F.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Siqueira, W. L.
|0 P:(DE-HGF)0
|b 7
|e Corresponding author
773 _ _ |a 10.1177/0022034515586769
|g Vol. 94, no. 8, p. 1106 - 1112
|0 PERI:(DE-600)2057074-0
|n 8
|p 1106 - 1112
|t Journal of dental research
|v 94
|y 2015
|x 1544-0591
856 4 _ |u https://juser.fz-juelich.de/record/281043/files/J%20DENT%20RES-2015-Xiao-1106-12.pdf
|y Restricted
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/281043/files/J%20DENT%20RES-2015-Xiao-1106-12.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/281043/files/J%20DENT%20RES-2015-Xiao-1106-12.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/281043/files/J%20DENT%20RES-2015-Xiao-1106-12.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/281043/files/J%20DENT%20RES-2015-Xiao-1106-12.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/281043/files/J%20DENT%20RES-2015-Xiao-1106-12.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:281043
|p VDB
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-Juel1)131047
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)156431
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-Juel1)156164
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J DENT RES : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21