000028114 001__ 28114
000028114 005__ 20240709094351.0
000028114 0247_ $$2DOI$$a10.1023/A:1021879800937
000028114 0247_ $$2WOS$$aWOS:000180221900016
000028114 037__ $$aPreJuSER-28114
000028114 041__ $$aeng
000028114 082__ $$a670
000028114 084__ $$2WoS$$aMaterials Science, Multidisciplinary
000028114 1001_ $$0P:(DE-Juel1)129637$$aMeulenberg, W. A.$$b0$$uFZJ
000028114 245__ $$aOxidation behaviour of ferrous alloys used as interconnecting material in solid oxide fuel cells
000028114 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2003
000028114 300__ $$a507 - 513
000028114 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000028114 3367_ $$2DataCite$$aOutput Types/Journal article
000028114 3367_ $$00$$2EndNote$$aJournal Article
000028114 3367_ $$2BibTeX$$aARTICLE
000028114 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000028114 3367_ $$2DRIVER$$aarticle
000028114 440_0 $$03507$$aJournal of Materials Science$$v38$$x0022-2461
000028114 500__ $$aRecord converted from VDB: 12.11.2012
000028114 520__ $$aUnder operating conditions in the solid oxide fuel cell (SOFC), metallic interconnect plates form electrically insulating or poor-conducting oxide scales (e.g. Cr2O3, Al2O3) at their surface which increase the contact resistance from one fuel cell membrane to the next. In order to minimize electric losses in a fuel cell stack, the formation of oxide scales on the interconnect surface must either be prevented or the oxide scale formed must have sufficient electrical conductivity. In the present work, investigations were carried out on the corrosion behaviour of different FeCrAl and FeCrMn alloys, some of which were coated with nickel (Ni). Information about ageing of these alloys on the anode side of the fuel cell was obtained by means of contact resistance measurements and scanning electron microscopy. The results reveal that FeCrMn(LaTi) alloys and Ni-coated interconnects exhibit low ageing rates and are thus suitable for use on the anode side of SOFCs. (C) 2003 Kluwer Academic Publishers.
000028114 536__ $$0G:(DE-Juel1)FUEK246$$2G:(DE-HGF)$$aBrennstoffzelle$$cE01$$x0
000028114 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x1
000028114 588__ $$aDataset connected to Web of Science
000028114 650_7 $$2WoSType$$aJ
000028114 7001_ $$0P:(DE-Juel1)129580$$aUhlenbruck, S.$$b1$$uFZJ
000028114 7001_ $$0P:(DE-Juel1)129810$$aWessel, E.$$b2$$uFZJ
000028114 7001_ $$0P:(DE-Juel1)129594$$aBuchkremer, H. P.$$b3$$uFZJ
000028114 7001_ $$0P:(DE-Juel1)129666$$aStöver, D.$$b4$$uFZJ
000028114 773__ $$0PERI:(DE-600)2015305-3$$a10.1023/A:1021879800937$$gVol. 38, p. 507 - 513$$p507 - 513$$q38<507 - 513$$tJournal of materials science$$v38$$x0022-2461$$y2003
000028114 8567_ $$uhttp://dx.doi.org/10.1023/A:1021879800937
000028114 909CO $$ooai:juser.fz-juelich.de:28114$$pVDB
000028114 9131_ $$0G:(DE-Juel1)FUEK246$$bEnergie$$kE01$$lRationelle Energieumwandlung$$vBrennstoffzelle$$x0
000028114 9141_ $$y2003
000028114 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000028114 9201_ $$0I:(DE-Juel1)VDB5$$d31.12.2006$$gIWV$$kIWV-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000028114 9201_ $$0I:(DE-Juel1)VDB2$$d31.12.2006$$gIWV$$kIWV-2$$lWerkstoffstruktur und Eigenschaften$$x1
000028114 970__ $$aVDB:(DE-Juel1)21336
000028114 980__ $$aVDB
000028114 980__ $$aConvertedRecord
000028114 980__ $$ajournal
000028114 980__ $$aI:(DE-Juel1)IEK-1-20101013
000028114 980__ $$aI:(DE-Juel1)IEK-2-20101013
000028114 980__ $$aUNRESTRICTED
000028114 981__ $$aI:(DE-Juel1)IMD-1-20101013
000028114 981__ $$aI:(DE-Juel1)IMD-2-20101013
000028114 981__ $$aI:(DE-Juel1)IEK-1-20101013
000028114 981__ $$aI:(DE-Juel1)IEK-2-20101013