001     281144
005     20240708133656.0
024 7 _ |2 doi
|a 10.1557/opl.2015.431
024 7 _ |2 ISSN
|a 0272-9172
024 7 _ |2 ISSN
|a 1946-4274
037 _ _ |a FZJ-2016-00849
041 _ _ |a English
082 _ _ |a 670
100 1 _ |0 P:(DE-Juel1)130217
|a Beyer, W.
|b 0
|u fzj
245 _ _ |a Comparison of Laser and Oven Annealing Effects on Hydrogen and Microstructure in Thin Film Silicon
260 _ _ |a Warrendale, Pa.
|b MRS
|c 2015
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1453463038_7961
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Laser and oven annealing effects on hydrogen concentration, hydrogen diffusion and material microstructure in hydrogenated amorphous silicon films deposited on crystalline silicon substrates are compared. For laser annealing, a 6 W green (532 nm) continuous wave laser with 100 µm focus diameter was applied and samples of about 1 cm2 were scanned in ambient with a line distance of 50 µm and at a speed of 1 – 100 mm/s. Hydrogen content and microstructure were measured by infrared spectroscopy, and hydrogen diffusion was investigated by secondary ion mass spectroscopy (SIMS) measurements of depth profiles of deuterium and hydrogen in layered structures of deuterated and hydrogenated material. The results show that in both annealing experiments hydrogen diffuses predominantly in form of atoms although some formation of H2 molecules cannot be excluded. By comparison of laser and oven treatment, an effective temperature describing the laser treated state can be defined. Furthermore, the temperature of the thin silicon film during laser treatment is estimated.
536 _ _ |0 G:(DE-HGF)POF3-121
|a 121 - Solar cells of the next generation (POF3-121)
|c POF3-121
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
650 2 7 |0 V:(DE-MLZ)SciArea-120
|2 V:(DE-HGF)
|a Condensed Matter Physics
|x 0
700 1 _ |0 P:(DE-HGF)0
|a Bergmann, J.
|b 1
700 1 _ |0 P:(DE-Juel1)138352
|a Breuer, U.
|b 2
|u fzj
700 1 _ |0 P:(DE-Juel1)130238
|a Finger, F.
|b 3
|u fzj
700 1 _ |0 P:(DE-Juel1)130263
|a Lambertz, A.
|b 4
|u fzj
700 1 _ |0 P:(DE-Juel1)130268
|a Merdzhanova, T.
|b 5
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Nickel, N. H.
|b 6
700 1 _ |0 P:(DE-Juel1)130283
|a Pennartz, F.
|b 7
|u fzj
700 1 _ |0 P:(DE-Juel1)161279
|a Schmidt, T.
|b 8
700 1 _ |0 P:(DE-Juel1)130309
|a Zastrow, U.
|b 9
|u fzj
773 _ _ |0 PERI:(DE-600)2451008-7
|a 10.1557/opl.2015.431
|g Vol. 1770, p. 1 - 6
|p 1 - 6
|t MRS online proceedings library
|v 1770
|x 1946-4274
|y 2015
909 C O |o oai:juser.fz-juelich.de:281144
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130217
|a Forschungszentrum Jülich GmbH
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)138352
|a Forschungszentrum Jülich GmbH
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130238
|a Forschungszentrum Jülich GmbH
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130263
|a Forschungszentrum Jülich GmbH
|b 4
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130268
|a Forschungszentrum Jülich GmbH
|b 5
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130283
|a Forschungszentrum Jülich GmbH
|b 7
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130309
|a Forschungszentrum Jülich GmbH
|b 9
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-121
|1 G:(DE-HGF)POF3-120
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|l Erneuerbare Energien
|v Solar cells of the next generation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2015
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
920 1 _ |0 I:(DE-Juel1)ZEA-3-20090406
|k ZEA-3
|l Analytik
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ZEA-3-20090406
981 _ _ |a I:(DE-Juel1)ZEA-3-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21