000281149 001__ 281149
000281149 005__ 20210129221632.0
000281149 020__ $$a978-113-802-757-2
000281149 0247_ $$2GVK$$aGVK:830050388
000281149 037__ $$aFZJ-2016-00854
000281149 041__ $$aEnglish
000281149 082__ $$a624.171
000281149 1001_ $$0P:(DE-HGF)0$$aKilic, Sami And$$b0$$eCorresponding author
000281149 1112_ $$aMulti-Span Large Bridges 2015$$cPorto$$d2015-07-01 - 2015-07-03$$gMSLB 2015$$wPortugal
000281149 245__ $$aFinite element modeling of the Fatih Sultan Mehmet Suspension Bridge
000281149 260__ $$aHoboken$$bCRC Press/Balkema$$c2015
000281149 29510 $$aProceedings of the International Conference on Multi-Span Large Bridges
000281149 300__ $$a1169-1173
000281149 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1454501235_9287
000281149 3367_ $$033$$2EndNote$$aConference Paper
000281149 3367_ $$2ORCID$$aCONFERENCE_PAPER
000281149 3367_ $$2DataCite$$aOutput Types/Conference Paper
000281149 3367_ $$2DRIVER$$aconferenceObject
000281149 3367_ $$2BibTeX$$aINPROCEEDINGS
000281149 520__ $$aThis study presents the 3D finite element model of the Fatih Sultan Mehmet Suspension Bridge located In Istanbul, Turkey. All the towers and the deck are modeled with four node thin shell finite elements with the inclusion of internal diaphragms. The main suspension cable, the back-stay cable, and the hanger cables are modeled with two node beam finite elements. An initial nonlinear static analysis utilizing the geometric stiffness is performed in order to obtain the correct pre-stressing forces in the cables. An eigenvalue analysis of the bridge is performed once a converged solution is obtained by the non-linear static analysis. The results of the eigenvalue analysis are compared with the available ambient vibration test measurements and the results of the finite element model of the bridge with only beam elements. The results show that the 3D numerical model utilizing thin shell finite elements can accurately represent the modal periods of the suspension bridge.
000281149 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000281149 588__ $$aDataset connected to GVK
000281149 7001_ $$0P:(DE-HGF)0$$aRaatschen, Hans-Jürgen$$b1
000281149 7001_ $$0P:(DE-Juel1)132176$$aKörfgen, Bernd$$b2$$ufzj
000281149 7001_ $$0P:(DE-HGF)0$$aAstaneh-Asl, Abolhassan$$b3
000281149 7001_ $$0P:(DE-HGF)0$$aApaydin, Nurdan Memisoglu$$b4
000281149 8564_ $$uhttps://juser.fz-juelich.de/record/281149/files/MSLB2015_Kilic_Raatschen_Koerfgen_Astaneh-Asl_Apaydin.pdf$$yRestricted
000281149 8564_ $$uhttps://juser.fz-juelich.de/record/281149/files/MSLB2015_Kilic_Raatschen_Koerfgen_Astaneh-Asl_Apaydin.gif?subformat=icon$$xicon$$yRestricted
000281149 8564_ $$uhttps://juser.fz-juelich.de/record/281149/files/MSLB2015_Kilic_Raatschen_Koerfgen_Astaneh-Asl_Apaydin.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000281149 8564_ $$uhttps://juser.fz-juelich.de/record/281149/files/MSLB2015_Kilic_Raatschen_Koerfgen_Astaneh-Asl_Apaydin.jpg?subformat=icon-180$$xicon-180$$yRestricted
000281149 8564_ $$uhttps://juser.fz-juelich.de/record/281149/files/MSLB2015_Kilic_Raatschen_Koerfgen_Astaneh-Asl_Apaydin.jpg?subformat=icon-640$$xicon-640$$yRestricted
000281149 8564_ $$uhttps://juser.fz-juelich.de/record/281149/files/MSLB2015_Kilic_Raatschen_Koerfgen_Astaneh-Asl_Apaydin.pdf?subformat=pdfa$$xpdfa$$yRestricted
000281149 909CO $$ooai:juser.fz-juelich.de:281149$$pVDB
000281149 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132176$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000281149 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000281149 9141_ $$y2015
000281149 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000281149 980__ $$acontrib
000281149 980__ $$aVDB
000281149 980__ $$aI:(DE-Juel1)JSC-20090406
000281149 980__ $$aUNRESTRICTED