001     281149
005     20210129221632.0
020 _ _ |a 978-113-802-757-2
024 7 _ |a GVK:830050388
|2 GVK
037 _ _ |a FZJ-2016-00854
041 _ _ |a English
082 _ _ |a 624.171
100 1 _ |a Kilic, Sami And
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
111 2 _ |a Multi-Span Large Bridges 2015
|g MSLB 2015
|c Porto
|d 2015-07-01 - 2015-07-03
|w Portugal
245 _ _ |a Finite element modeling of the Fatih Sultan Mehmet Suspension Bridge
260 _ _ |a Hoboken
|c 2015
|b CRC Press/Balkema
295 1 0 |a Proceedings of the International Conference on Multi-Span Large Bridges
300 _ _ |a 1169-1173
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1454501235_9287
|2 PUB:(DE-HGF)
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a INPROCEEDINGS
|2 BibTeX
520 _ _ |a This study presents the 3D finite element model of the Fatih Sultan Mehmet Suspension Bridge located In Istanbul, Turkey. All the towers and the deck are modeled with four node thin shell finite elements with the inclusion of internal diaphragms. The main suspension cable, the back-stay cable, and the hanger cables are modeled with two node beam finite elements. An initial nonlinear static analysis utilizing the geometric stiffness is performed in order to obtain the correct pre-stressing forces in the cables. An eigenvalue analysis of the bridge is performed once a converged solution is obtained by the non-linear static analysis. The results of the eigenvalue analysis are compared with the available ambient vibration test measurements and the results of the finite element model of the bridge with only beam elements. The results show that the 3D numerical model utilizing thin shell finite elements can accurately represent the modal periods of the suspension bridge.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
588 _ _ |a Dataset connected to GVK
700 1 _ |a Raatschen, Hans-Jürgen
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Körfgen, Bernd
|0 P:(DE-Juel1)132176
|b 2
|u fzj
700 1 _ |a Astaneh-Asl, Abolhassan
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Apaydin, Nurdan Memisoglu
|0 P:(DE-HGF)0
|b 4
856 4 _ |u https://juser.fz-juelich.de/record/281149/files/MSLB2015_Kilic_Raatschen_Koerfgen_Astaneh-Asl_Apaydin.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/281149/files/MSLB2015_Kilic_Raatschen_Koerfgen_Astaneh-Asl_Apaydin.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/281149/files/MSLB2015_Kilic_Raatschen_Koerfgen_Astaneh-Asl_Apaydin.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/281149/files/MSLB2015_Kilic_Raatschen_Koerfgen_Astaneh-Asl_Apaydin.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/281149/files/MSLB2015_Kilic_Raatschen_Koerfgen_Astaneh-Asl_Apaydin.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/281149/files/MSLB2015_Kilic_Raatschen_Koerfgen_Astaneh-Asl_Apaydin.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:281149
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132176
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2015
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21