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We present the crossover line between the quark gluon plasma and the hadron gas phases for small 
real chemical potentials. First we determine the effect of imaginary values of the chemical potential on 
the transition temperature using lattice QCD simulations. Then we use various formulas to perform an 
analytic continuation to real values of the baryo-chemical potential. Our data set maintains strangeness 
neutrality to match the conditions of heavy ion physics. The systematic errors are under control up to 
μB ≈ 300 MeV. For the curvature of the transition line we find that there is an approximate agreement 
between values from three different observables: the chiral susceptibility, chiral condensate and strange 
quark susceptibility. The continuum extrapolation is based on Nt = 10, 12 and 16 lattices. By combining 
the analysis for these three observables we find, for the curvature, the value κ = 0.0149 ± 0.0021.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

For heavy ion physics, the most important feature of the phase 
diagram of Quantum Chromodynamics (QCD) is the line that sepa-
rates the hadron gas phase from the quark gluon plasma, and the 
conjectured critical end-point along this line separating cross-over 
from first order transition [1].

The qualitative form of the phase diagram was sketched four 
decades ago [2] as a consequence of Hagedorn’s exponential spec-
trum of hadron masses [3]. The order of the transition at zero 
density has been determined much later, for Nature’s selection 
of quark masses the two high temperature phases are connected 
through a cross-over [4]. In the absence of a real transition the 
cross-over temperature can be determined but it is ambiguous [5]. 
Observables that are related to the spontaneous breaking of chiral 
symmetry (chiral condensate and its susceptibility) give a temper-
ature around 155 MeV [5–8].

Beyond the transition temperature Tc at vanishing density, the 
chiral cross-over line is described by a standard curvature param-
eter (κ ) and higher order terms:

Tc(μB)

Tc(μ = 0)
= 1 − κ

(
μB

Tc(μB)

)2

+ λ

(
μB

Tc(μB)

)4

. . . (1)
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Extracting Tc(μB) from first principles is very challenging. 
Direct Monte-Carlo calculations are hindered by the sign prob-
lem. Attempts to reach non-vanishing μB on the lattice include 
reweighting of the generated configurations [9–13], Taylor ex-
pansion in μ [14–18], analytic continuation from imaginary μ
[19–26], use of the canonical ensemble [27–29] and density of 
state methods [30,31]. More recent approaches are represented by 
the use of dual variables [32], and the complex Langevin equation 
[33,34]. However, their application to QCD with physical parame-
ters and controlled discretization has not yet been achieved. The 
phase diagram was frequently studied in various model frame-
works, see e.g. Ref. [1] and references therein. Recently, functional 
methods have also been applied to QCD [35–37].

For the first few coefficients in Eq. (1) it is enough to study 
QCD at small μB , for which there are several methods. κ can be 
and has been determined by calculating the μB -derivative of the 
chiral condensate using only μB = 0 ensembles [18,38]. However, 
the signal/noise ratio of higher μB derivatives is suppressed with 
powers of the volume, making this approach impractical beyond 
μ2

B order. Lattice calculations are perfectly feasible, though, with 
imaginary values of the chemical potential [10,19,39]. Setting μB =
iμI

B one avoids the sign problem and the transition line can be 
studied [40–43].

In this study we follow the imaginary-μB approach and go 
beyond previous studies by a) performing a continuum approxima-
tion with lattices up to Nt = 16; b) tuning μS (μB , T ) such that the 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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strangeness neutrality condition is maintained; c) using several ob-
servables: chiral condensate, chiral susceptibility and strange sus-
ceptibility; d) comparing the Taylor and the imaginary-μ method 
for the strange susceptibility; e) calculating the systematic errors 
from scale setting, fit ranges, analytic formulas, etc.1

This Letter first gives a brief account of the necessary lattice 
simulations at zero and finite temperatures. Then the method for 
setting strangeness neutrality is explained. Finally, we give a de-
tailed description of the analysis and present the continuum re-
sults for the curvature.

2. Simulation setup

This study is part of the 2nd generation staggered thermody-
namics program of the Wuppertal–Budapest collaboration [45]. We 
use a four times stout [46] smeared (ρ = 0.125) staggered fermion 
action with 2 + 1 + 1 flavors, i.e. dynamical up, down, strange 
and charm quarks. The gauge action uses the tree-level Symanzik 
improvement. The two light quarks are degenerate, their masses 
and the strange quark mass are tuned such that the physical pion 
and kaon mass over pion decay constant are reproduced for ev-
ery lattice spacing. For the zero temperature runs we kept the 
volume large Lmπ > 4 in the entire lattice spacing range of in-
terest for this study: a = 0.2 . . . 0.063 fm. The charm mass was set 
to mc/ms = 11.85 [47]. The simulation parameters are detailed in 
Ref. [45]. The overall scale was determined from fπ . We used w0
as an alternative scale setting for the analysis [48].

The chiral susceptibility as well as the chiral condensate require 
renormalization. The additive divergence is removed by subtract-
ing the vacuum expectation value, the multiplicative divergence 
canceled by the same factor in the bare quark mass [5,6]. The 
renormalized condensate and its susceptibility are dimensionful 
quantities, we use the fourth power of the pion mass to form a 
dimensionless observable. We do not restrict the chiral suscepti-
bility to the disconnected part. The third observable that we use 
to identify the μ-dependent transition temperature is the strange 
susceptibility: thanks to the exact quark number conservation it 
does not require renormalization.

At finite temperature, we have collected data at zero and at 
imaginary baryo-chemical potentials. The μB = 0 data are used to 
perform a Taylor expansion on one of our studied observables, and 
also to obtain a “baseline” for the shifted transition temperatures 
at other μB values. The zero density configurations are listed in 
Ref. [45].

The range of imaginary baryo-chemical potentials is limited by 
the Roberge–Weiss transition at μB = iπ T [49]. Below a limiting 
temperature TRW there is no transition as Im [μB/T ] crosses π , but 
there is a first order transition above TRW , where the imaginary 
density is non-vanishing and flips sign at μI

B/T = π . The nature 
of the transition at TRW depends on the quark masses [50–52]. For 
intermediate masses the system at T = TRW and μI

B/T = π will be 
critical, and then in the entire range of smaller imaginary chem-
ical potentials we will see a crossover in temperature. Our data 
suggests that, for physical masses, the latter scenario is realized, 
namely we are working with a cross-over for all used μI

B/T .
We selected six imaginary chemical potential values:

μ
( j)
B = iT

jπ

8
, j = 1,2,3,4,5,6 (2)

1 During the writing of this manuscript a similar independent analysis, based on 
Nt = 6, 8, 10, 12 lattices and analytic continuation from imaginary μB appeared in
arXiv [44]. Their findings are similar to ours but the present analysis has finer lat-
tices, smaller pion splittings and significantly larger statistics.
We have all six j values for our Nt = 8, 10 and 12 lattices and 
only j = 3 . . . 6 for Nt = 16. The reason for this is the following: 
j = 0 . . . 5 data are needed to determine the simulation parame-
ters at finite imaginary μ( j+1)

B such that the strangeness neutrality 
condition is fulfilled (see later). The continuum extrapolation for 
this analysis can be carried out using Nt = 8, 10 and 12 lattices. 
For the determination of the curvature κ of the phase diagram we 
also need the finest Nt = 16 lattices. Since j = 1 and 2 do not give 
a statistically very significant contribution to κ we decided not to 
have these two points in our most expensive Nt = 16 ensembles. 
Therefore, in order to have the same setup for all lattice spacings, 
the κ determination is based on j = 3, 4 and 5. The j = 6 point is 
used to estimate higher order effects.

This range to find the κ coefficient (μI
B/T � 2) is narrower than 

in earlier studies (e.g. μI
B/T � 2.36 in Ref. [42] and μI

B/T � 2.6
in Ref. [43]). A broader range of chemical potentials has the ad-
vantage that the numerical derivative [Tc(μB) − Tc(0)]/μ2

B has a 
larger signal/noise ratio. However, more non-linearities appear in a 
broader range and the results are more prone to systematic errors 
as the singularity at μI

B ≈ π T is approached. This is the reason 
(to avoid unwanted systematic uncertainties) why we have taken a 
smaller μI

B range and we use other methods to increase the sig-
nal/noise ratio.

We performed simulations on 323 × 8, 403 × 10, 483 × 12 and 
643 × 16 lattices, at sixteen temperatures in the temperature range 
135. . . 210 MeV. We have generated between 10000–15000 Hybrid 
Monte Carlo updates, analyzing every 5th of them (every 10th for 
Nt = 16). The configurations have been evaluated for up to fourth 
order generalized quark number susceptibilities [53] and for the 
chiral condensate and susceptibility. For μB = 0 we have 5 . . . 10
times more statistics, this ensures a solid guidance to the fitting 
procedure.

3. Strangeness neutrality

The most popular representation of the QCD phase diagram 
is in the temperature vs. chemical potential plane. The baryo-
chemical potential axis leaves room for various interpretations. 
Ref. [42] used the full baryo-chemical potential including the 
strange quarks, i.e. μu = μd = μs = μB/3. In Ref. [43] both μu =
μd = μs = μB/3 and μu = μd = μB/3, μs = 0 were studied.

However, neither of the recipes μs = 0 or μs = μB/3 maps con-
sistently to the situation that is realized in experiment. In heavy 
ion collisions, non-strange particles are colliding. Although ss̄ are 
generated in the collision, the net-strangeness is zero. Therefore 
we want to tune the chemical potentials to such values which 
guarantee strangeness neutrality. The light chemical potentials are 
kept identical (μu = μd), which ensures isospin symmetry also 
at finite μB . This corresponds to an experimental situation where 
Z = 0.5A. Alternatively, one can achieve a different Z/A ratio cor-
responding to heavy nuclei by tuning μu and μd appropriately. 
This possibility will be discussed later. Requiring strangeness neu-
trality and fixing the value of Z/A (or alternatively the electric 
charge/baryon number ratio) uniquely determines all three quark 
chemical potentials as functions of μB . For the isospin symmetric 
case μu = μd = μB/3 so the only non-trivial task is to find the 
strange quark or strangeness chemical potential.

The strange quark chemical potential (μs) is related to the 
strangeness (μS ) and baryo-chemical potential (μB ) as μs =
μB/3 − μS . Then μs = μB/3 approximates strangeness neutral-
ity at low temperature, and μs = 0 at high temperature. In this 
work we determine the strangeness neutral trajectory μS (μB , T )

from lattice simulations.
It is relatively straightforward to perform Taylor expansions 

from μB = 0 on the trajectory that respects strangeness neutral-
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Fig. 1. The imaginary strangeness chemical potential that realizes strangeness neu-
trality. Here we show a continuum extrapolation based on 323 × 8, 403 × 10, 
483 × 12 lattices for μI

B/T = 0.39 and 0.79 and also using 643 × 16 for the larger 
chemical potentials. The error is statistical only.

ity. For the equation of state [54,55] and for fluctuations relevant 
for calculating freeze-out parameters in heavy ion collisions [53,
56] this procedure is already standard.

For actual simulations at finite μI
B the strange chemical poten-

tial has to be fine tuned for every temperature, baryo-chemical 
potential and lattice spacing. We solved this challenge by solving 
the

d

dμI
B

∂ log Z

∂μS
= 0 , (3)

differential equation discretized in μB with the trivial initial con-
dition ∂ log Z/∂μS = 0 at μI

B = 0. This equation simply states that 
the μI

B derivative of strangeness is zero. Using the 2nd order ex-
plicit Runge–Kutta scheme, we determine μI

S (μ
I
B) using the pre-

scription:

μI
S(μ

I
B + �μI

B) = μI
S(μ

I
B − �μI

B) − 2
χ11

S B

χ2
S

∣∣∣∣∣
μI

B

�μI
B , (4)

with the step size �μI
B/T = π/8 (see Eq. (2)). For the initial step 

(μI
B/T = �μI

B/T ) we used the high-statistics μB = 0 runs and 
NLO Taylor expansion. Each step using Eq. (4) requires a simu-
lation at μI

B and the evaluation of the 2nd order fluctuations: 
χ11

S B = 1/(T V )∂2 log Z/∂μS∂μB and χ S
2 = 1/(T V )∂2 log Z/∂μ2

S . 
This method would be O(�μI

B
2
) accurate only, but as an addi-

tional correction, we do a small extrapolation for both terms on 
the RHS of Eq. (4) after each simulation so that the remaining 
strangeness neutrality violation is not propagated to the next step. 
For this extrapolation, we need higher order fluctuations [53]. This 
combination is O(�μI

B
3
) accurate in the complete μI

B range. The 
resulting μS(μB , T ) function is interpolated in T and extrapolated 
in 1/N2

t and the resulting smooth function is used to start the sim-
ulations at μI

B + �μI
B . In Fig. 1 we show the resulting strangeness 

chemical potential.

4. Analysis details

We calculate the curvature of the phase diagram from three 
observables. We calculate statistical and systematic errors for all 
three.

1) Our first observable is the chiral susceptibility χψ̄ψ/m4
π . As 

discussed previously, it requires additive and multiplicative renor-
malization. For details on this procedure see Ref. [7]. The chiral 
susceptibility forms a peak at the transition temperature. With 
Fig. 2. The chiral susceptibility at several imaginary chemical potentials on our 
483 × 12 lattice. After a μI

B -dependent shifting and stretching, data from all chem-
ical potentials collapse on one curve. The fitted curve corresponds to Eq. (5) at 
μB = 0.

increasing imaginary chemical potential this peak is shifted to-
wards higher temperatures, approximately maintaining its height 
and width. For other normalizations (e.g. χψ̄ψ/T 4) the shape of 
the function changes more significantly while varying the chemi-
cal potential.

We fit χψ̄ψ(μI
B , T )/m4

π in a global fit function where for 
each μB a different width, height and peak position is al-
lowed, but the other parameters that describe the peak shape 
are μB -independent. We use two different modifications to the 
Lorentzian peak form:

χ r
ψ̄ψ

(μ, T )

m4
π

=
{

C + A2(μ)
(
1 + W 2(μ)(T − Tc(μ))2

)α
for T ≤ Tc

C + A2(μ)
(
1 + B2W 2(μ)(T − Tc(μ))2

)α
for T > Tc

(5)

and

χ r
ψ̄ψ

(μ, T )

m4
π

= C + A(μ)

1 + W 2(μ)(T − Tc(μ))2 + BW 3(μ)(T − Tc(μ))3
(6)

The μ dependent parameters A(μ), W (μ) and Tc(μ) describe the 
change in the height, width and the position of the curve as μ
increases. For the zero temperature data which are required for 
renormalization we use two different interpolations in the inverse 
gauge coupling: a 6th order polynomial and a simple rational func-
tion. We have two options for the scale setting using fπ or w0 and 
we apply three possible fit windows to select the transition range. 
In order not to interfere with the shifted temperature dependence 
the fit windows constrain the value of the susceptibility, not the 
temperature.

The effect of the μ dependent parameters is a shift in T , and 
a rescaling in T and χ . Applying the inverse transformation to the 
finite μI

B data points all of them should collapse on the μB = 0
curve. This is demonstrated in Fig. 2. The advantage of this pro-
cedure is that the μ independent parameters can be fitted using 
the high-statistics runs at μB = 0 and the non-vanishing μI

B runs 
are needed to determine the relative position and rescaling com-
pared to this more complicated functional form. This allows the 
precise determination of �Tc(μ

I
B) with an error below 0.25 MeV, 

while Tc(μB) itself has an error of several MeV. We extract κ by a 
linear fit of �Tc vs. μ2

B in the range 1.2 � μI
B/T � 2, and extrap-

olate κ to the continuum. Since the continuum extrapolation of κ
had a large χ2 when all four lattices were used we included only 
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Table 1
The curvature (κ ) of the QCD phase diagram in the continuum 
limit from various observables. κ is fitted in the range 1.2 �
μI

B/T �< 2.

Chiral susceptibility 0.0158 ± 0.0013
Chiral condensate 0.0138 ± 0.0011
Strange susceptibility 0.0149 ± 0.0021
Susceptibility at Z = 0.4A 0.0149 ± 0.0017

Nt = 10, 12 and 16 in the final result, resulting in a good χ2 for 
all analyses. In an alternative analysis we made a combined con-
tinuum and μ2

B fit again using only the finest three lattice spacing, 
and found acceptable χ2 values again.

2) The chiral condensate 〈ψ̄ψ〉r = mq(d log Z/dmq)/m4
π is a 

remnant order parameter of the chiral transition. Its inflection 
point (though it is hard to locate in a finite precision data set) 
is very close to the peak position of χψ̄ψ/m4

π . At finite μI
B the 

temperature dependence of 〈ψ̄ψ〉r is shifted and very slightly 
stretched.

We find that the data at μB = 0 (see Ref. [7]) can be very accu-
rately described by simple fit functions. The μ dependence in this 
case is well described by just two μB -dependent parameters de-
scribing a shifting and rescaling of the renormalized condensate. 
We use the following parameterizations:

〈ψ̄ψ〉r(μ, T ) = A(μ) (1 + B tanh [C (T − Tc(μ))]

+ D (T − Tc(μ))) (7)

and

〈ψ̄ψ〉r(μ, T ) = A(μ) (1 + B arctan [C (T − Tc(μ))]

+ D (T − Tc(μ))) . (8)

Similarly to the chiral susceptibility, we use two possible zero tem-
perature interpolations (6th and 7th order polynomials of the in-
verse gauge coupling), two scale settings, four fit windows. κ is 
obtained either from a combined μ2

B and continuum fit, or sepa-
rately.

3) The analysis of the strange susceptibility χ S
2 goes along the 

lines of the chiral condensate. A simplification here is the absence 
of renormalization. Since this quantity is the most sensitive to 
the actual value of strangeness, before the analysis we correct for 
the inaccuracies of the strangeness neutrality condition using the 
higher μS fluctuations. Although its inflection point does not have 
to agree with that of the chiral condensate, we find that the shift-
ing effect of the chemical potential is very similar.

For all three quantities we make a histogram of the results from 
all analyses. For the chiral susceptibility we have two T > 0 fit 
forms, two T = 0 interpolations, two scale settings, three fit win-
dows and either separate or combined κ extraction and continuum 
limit. This results in 2 · 2 · 2 · 3 · 2 = 48 analyses. For the conden-
sate we have the same choices but with four fit windows resulting 
in 64 analyses. For the strange susceptibility there is no renormal-
ization, thus no T = 0 interpolation is needed which leads to 32 
analyses. The central 68% of the histograms estimates our system-
atic error. The statistical error is obtained from 1000 bootstrap 
samples. The two errors are of similar magnitude and they are 
added in quadrature resulting in our final uncertainties.

We summarize our results for the curvature in Table 1.
The histograms of the three quantities can be joined into a 

single one leading to our combined result based on our three ob-
servables with strangeness neutrality:

κ = 0.0149 ± 0.0021 . (9)
Fig. 3. Comparison of the strange susceptibility obtained from direct simulation and 
extrapolation for μI

B/T = 5π/8. The blue circles and squares correspond to the 
strangeness neutral case obtained via extrapolation from μ = 0 and direct simula-
tions, respectively. The green triangles show the full baryo-chemical potential case 
obtained via extrapolation from μ = 0. There are no direct simulations in this case 
but one can extrapolate from the strangeness neutral direct point (green dots). As 
a reference the μ = 0 data are also shown (red crosses). (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of 
this article.)

We also consider the curvature for the case when not only the 
strangeness neutrality, but also proper charge/baryon density ratio 
is reproduced (for lead and gold ions: Z ≈ 0.4A). We achieve this 
by Taylor-extrapolating the strange susceptibility for every finite 
μB ensemble to leading order, and fitting as before. We conclude 
that the difference between Z = 0.4A and Z = 0.5A phase dia-
grams is negligible for small μB .

For small enough imaginary chemical potential the analytical 
and the Taylor method have to give the same curvature at every 
lattice resolution. In the Taylor method one expands the observ-
ables in μB , the leading coefficients are calculated from μB = 0
simulations and then used to extrapolate to finite μB . Fig. 3 shows 
how this expansion compares to the direct simulations for our 
j = 5 chemical potential which is the largest one used to extract κ . 
A comparison in the case of full baryo-chemical potential is also 
shown. The extrapolated data are then fitted for κ as if they were 
simulated at finite μI

B . At Nt = 10 we find κ = 0.0131(9) from the 
direct simulations and κ = 0.0115(10) from the Taylor expansion. 
The agreement indicates that we are still in the linear regime and 
the extraction of κ using j = 3, 4, 5 is safe.

Finally we estimate the systematics of the extrapolation to 
real μB . We include the j = 6 data points into the analysis and 
allow for non-linear Tc(μ

2
B) fits. We consider fitting Tc(μ

2
B)/Tc

with the functions 1 + ax, 1 + ax + bx2, (1 + ax)/(1 + bx) and 
(1 + ax + bx)−1 with x = μ2

B/T 2. All these functions are analytic in 
x and they represent various analytic continuations of the Tc(μ

I
B)

imaginary μ phase diagram. The difference between these ansatzes 
provides a systematic uncertainty for the real μ phase diagram.

Our main results are depicted in Fig. 4. Since the curvature from 
both the strange susceptibility and from the chiral condensate/sus-
ceptibility are consistent with each other we show only one curve. 
The curvature from the chiral condensate is our most precise re-
sult, therefore we present the transition line coming from this 
observable. The corresponding transition temperature at μ = 0 is 
at 157 MeV. At intermediate real μB we observe a significant rise 
in the uncertainty due to the statistical error on the non-linear 
μ2

B -dependence and the ambiguity of the analytic ansatz. This sets 
the range of validity for this study.

The present result indicates a stronger curvature than the one 
presented in Ref. [38]. There are, however a couple differences be-
tween the definitions/approaches of the curvature of the present 
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Fig. 4. The phase diagram based on the μ-dependent Tc from the chiral condensate, analytically continued from imaginary chemical potential. The blue band indicates the 
width of the transition. The shaded black region shows the transition line obtained from the chiral condensate. The widening around 300 MeV is coming from the uncertainty 
of the curvature and from the contribution of higher order terms, thus the application range of the results is restricted for smaller μ values. For completeness, on the right 
panel we also show some selected non-lattice results: the Dyson–Schwinger result of Ref. [37] and the freeze-out data of Refs. [57–63]. (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.)
analysis and Ref. [38]. Note that the transition is a smooth cross-
over, thus different definitions obviously lead to different results.

a. In Ref. [38] we used a vanishing strangeness chemical po-
tential. In the present analysis we use instead vanishing strange 
density. The reason for this change is to be as close to the ex-
perimental situation as possible. In heavy ion collisions the net 
strangeness is zero.

b. It is emphasized in the discussion of Fig. 5 of [38] that only 
statistical uncertainties were provided. The present analysis esti-
mates systematic uncertainties coming from various aspects of the 
analysis as discussed earlier. These are comparable to or in some 
cases even larger than the statistical uncertainties. A similar as-
sumption on the systematics of Ref. [38] would make the tension 
between the results much weaker.
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