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Axions are one of the most attractive dark matter candidates. The evolution of their number density 
in the early universe can be determined by calculating the topological susceptibility χ(T ) of QCD as a 
function of the temperature. Lattice QCD provides an ab initio technique to carry out such a calculation. 
A full result needs two ingredients: physical quark masses and a controlled continuum extrapolation 
from non-vanishing to zero lattice spacings. We determine χ(T ) in the quenched framework (infinitely 
large quark masses) and extrapolate its values to the continuum limit. The results are compared with 
the prediction of the dilute instanton gas approximation (DIGA). A nice agreement is found for the 
temperature dependence, whereas the overall normalization of the DIGA result still differs from the non-
perturbative continuum extrapolated lattice results by a factor of order ten. We discuss the consequences 
of our findings for the prediction of the amount of axion dark matter.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

One of the greatest puzzles in particle physics is the nature of 
dark matter. A prominent particle candidate for the latter is the 
axion A [1,2]: a pseudo Nambu–Goldstone boson arising from the 
breaking of a hypothetical global chiral U (1) extension [3] of the 
Standard Model at an energy scale f A much larger than the elec-
troweak scale.

A key input for the prediction of the amount of axion dark 
matter [4–6] is its potential as a function of the temperature, 
V (A, T ). It is related to the free energy density in QCD, F (θ, T ) ≡
− ln Z(θ, T )/V , via

V (A, T ) ≡ − 1

V
ln

[
Z(θ, T )

Z(0, T )

]
|θ=A/ f A , (1)

where V is the Euclidean space–time volume. Here A(x) is the 
axion field and f A is the axion decay constant. The axion field 
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has mass dimension one, therefore A(x)/ f A is dimensionless and 
can be interpreted as an x dependent θ value. The angle θ enters 
the Euclidean QCD Lagrangian via the additional term involving the 
topological charge density q(x),

−iθq(x) ≡ −iθ
αs

16π
εμνρσ F a

μν(x)F a
ρσ (x), (2)

with F a
μν being the gluonic field strength and αs ≡ g2

s /(4π) the 
fine structure constant of strong interactions.

On general grounds, the free energy density and thus the axion 
potential has an absolute minimum at θ = A/ f A = 0. In fact, this 
is the reason why in this extension of the Standard Model there 
is no strong CP problem [3]. The curvature around this minimum 
determines the axion mass mA at finite temperature,

m2
A(T ) ≡ ∂2 V (A, T )

∂ A2
|A=0 = χ(T )

f 2
A

, (3)

in terms of the topological susceptibility, i.e. the variance of the 
θ = 0 topological charge distribution,
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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χ(T ) ≡
∫

d4x〈q(x)q(0)〉T |θ=0 = lim
V→∞

〈Q 2〉T |θ=0

V
, (4)

where Q ≡ ∫
d4xq(x). Similarly, self-interaction terms in the poten-

tial, e.g. the A4 term occurring in the expansion of the free energy 
density around θ = A/ f A = 0,

V (A, T ) = 1

2
χ(T )θ2

[
1 + b2(T )θ2 + . . .

]
|θ=A/ f A , (5)

are determined by higher moments,

b2(T ) = −〈Q 4〉T − 3〈Q 2〉2
T

12〈Q 2〉T
|θ=0 . (6)

These non-perturbative quantities enter in a prediction of the 
lower bound on the fractional contribution of axions to the ob-
served cold dark matter as follows1

R A � 105〈θ2〉 f (〈θ2〉) GeV3

g∗S(Tosc)T 3
osc

√
χ(Tosc)

χ(0)
, (7)

where 〈θ2〉 is the variance of the spatial distribution of the initial 
values of the axion field A/ f A before the formation of the dark 
matter condensate by the misalignment mechanism, which occurs, 
when the Hubble expansion rate gets of the order of the axion 
mass, mA(Tosc) = 3H(Tosc), i.e. at a temperature

Tosc � 50 GeV

g1/4
∗R (Tosc)

(
mA

μeV

)1/2 (
χ(Tosc)

χ(0)

)1/4

. (8)

The function f (〈θ2〉) is taking into account anharmonicity effects 
arising from the self-interaction terms in V (A, T ) and depends on 
the specific form of the potential. The functions g∗R (T ) and g∗S (T )

denote the effective number of relativistic energy and entropy de-
grees of freedom, respectively.

What is urgently needed for axion cosmology is thus a pre-
cise determination of the topological susceptibility and higher mo-
ments of the topological charge distribution. In this context, most 
predictions have been entirely based on the semi-classical ex-
pansion of the Euclidean path integral of finite temperature QCD 
around a dilute gas of instantons – finite action minima of the Eu-
clidean action with unit topological charge – see e.g. Ref. [8] for an 
early exhausting study and Ref. [9] for a recent update concerning 
the quark masses. A comparative study of these predictions based 
on the dilute instanton gas approximation (DIGA) has been carried 
out in Ref. [10], where also an analysis in terms of a phenomeno-
logical instanton liquid model (IILM) [11] is presented. However, 
up to now, in all DIGA investigations of the topological suscep-
tibility only the one-loop expression in the expansion around the 
instanton background field was used. This results in a strong renor-
malization scale dependence and thus large uncertainties which 
were neglected in the previous DIGA based predictions. In fact, in 
the temperature range Tosc ∼ GeV of interest, one expects a large 
uncertainty in the overall normalization due to the neglection of 
higher order loop effects, since in this region αs(Tosc) is not small. 
We will exploit in this letter both the one-loop DIGA result as 
well as its two-loop renormalization group improved (RGI) version 
in order to study the theoretical uncertainties arising from higher 
loop corrections. Most importantly, we compare these predictions 

1 This is a rewriting of equation (2.10) of Ref. [7] where we have used χ(0) =
(mA f A)2 � 3.6 × 10−5 GeV4 from the chiral Lagrangian to express f A in terms 
of mA , the zero temperature mass, that is itself a function of Tosc and the ratio 
χ(T )/χ(0) = (mA(T )/mA)2 through the condition for the onset of the oscillations, 
mA(Tosc) = 3H(Tosc) with H2 = 8π3G N g∗R (T )T 4/90 the Hubble expansion rate.
Fig. 1. Demonstration that volume is sufficiently large to have negligible finite vol-
ume corrections on Q 2. The data for T /Tc = 2 is multiplied by 3 for better visibility 
of the comparison.

with the outcome of our lattice based fully non-perturbative re-
sults.

Actually, there have been a number of lattice calculations of 
χ(T ) and b2(T ) at temperatures below or slightly above the QCD 
phase transition, mostly in quenched QCD, see e.g. [12–16]. Here 
we go beyond those lattice calculations. We extend the available 
temperature range and carry out a controlled continuum extrapo-
lation for this extended range. In addition, note that there has been 
no quantitative investigation whether and where the lattice results 
turn into the DIGA results. We will present our new high-quality 
lattice data for the topological susceptibility in quenched QCD (i.e. 
neglecting the effects of light quarks) and compare them quanti-
tatively to the DIGA result specialized to the case of n f = 0 light 
quarks.

2. Axion potential coefficients from the lattice

On the lattice, the topological susceptibility is measured on the 
torus as the second moment of the distribution of the global topo-
logical charge

χt = 〈Q 2〉/V,

where Q is any renormalized discretization of the global topolog-
ical charge, and V is the four-volume of the lattice. There are a 
lot of different fermionic and gluonic definitions of Q available. 
We choose a gluonic definition based on the Wilson flow [17,18], 
which has the correct continuum limit similarly to the fermionic 
definitions but is numerically a lot cheaper. In particular we evolve 
our gauge field configurations with the Wilson plaquette action to 
a flow time t and define the global topological charge as the in-
tegral over the clover definition of the topological charge density. 
This definition gives a properly renormalized observable when the 
flow time t is fixed in physical units.

We use a tree-level Symanzik improved gauge action. Our tem-
peratures range from below Tc up to 4Tc . Here Tc is the critical 
temperature, which is the quantity used for scale setting. The crit-
ical temperatures for different lattice spacings were determined in 
earlier work [19,20]. For the whole temperature range we keep the 
spatial lattice size approximately at L = 2/Tc . We checked with 
dedicated high volume runs at 1.5Tc and 2Tc that this volume is 
sufficiently large to have negligible finite volume corrections on 
Q 2. This is shown in Fig. 1. Our spatial geometry is L × L × 2L to 
enable tests of subvolume methods which will be reported sepa-
rately – here we only use the full volume. For all temperatures we 
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Table 1
List of simulation points: temperatures, lattice sizes Nt = 1/(aT ), Ns = L/a, number 
of sweeps Nsweeps , and estimated integrated autocorrelation time tint,Q are given.

T /Tc Nt Ns Nsweeps tint,Q

0.9 12 5 32 K 3.3(2)

12 6 48 K 7.1(4)

16 8 170 K 36.4(32)

1.0 12 5 48 K 4.6(2)

12 6 64 K 12.6(9)

16 8 180 K 53.9(52)

1.1 12 5 48 K 5.3(3)

16 6 160 K 12.7(8)

20 8 330 K 65.3(71)

1.3 16 5 64 K 5.7(3)

16 6 220 K 15.4(9)

24 8 550 K 70.2(87)

1.5 16 5 96 K 5.8(2)

20 6 210 K 14.5(10)

24 8 660 K 63.8(75)

1.7 20 5 420 K 6.9(2)

20 6 1300 K 18.9(6)

28 8 8200 K 88.1(42)

2.0 20 5 440 K 7.5(2)

24 6 1900 K 18.0(6)

32 8 8400 K 90.5(51)

2.3 24 5 740 K 8.0(3)

28 6 2400 K 18.7(5)

36 8 8500 K 60.4(31)

2.6 28 5 960 K 6.9(2)

32 6 3500 K 17.8(5)

44 8 8000 K 51.7(35)

3.0 32 5 1500 K 6.2(2)

36 6 5700 K 16.0(5)

48 8 11 000 K 54.3(46)

3.5 36 5 2200 K 5.3(1)

44 6 5200 K 15.6(6)

56 8 12 000 K <45.0

4.0 40 5 2600 K <5.0
48 6 5900 K 15.6(8)

64 8 12 000 K <45.0

have three lattice spacings (aT )−1 = 5, 6, 8 to be able to perform 
an independent continuum extrapolation for every temperature. 
The local heatbath/overrelaxation algorithm is used for the up-
date, one sweep consists of 1 heatbath and 4 overrelaxation steps. 
We found that the autocorrelation time of the topological charge 
depends weakly on (aT ), i.e. if the temperature is increased by 
decreasing the lattice spacing. The number of update sweeps be-
tween measurements was chosen in accordance with the autocor-
relation time. Table 1 lists the simulation points with the number 
of sweeps.

We integrated the Wilson flow numerically to a maximum 
flow-time of about 8t ≈ 1/(2T 2

c ) for all temperatures. Fig. 2 gives 
the dependence of the susceptibility on the flow time for T = 2Tc . 
While in the continuum limit the result is independent of the 
choice of the flow time t , different choices have very different 
lattice artefacts. For small flow times the different lattice spac-
ings give very different results. For larger flow times the expected 
plateau behavior can be observed for each lattice spacing and the 
lattice artefacts also decrease significantly. The choice of the flow 
time brings in some arbitrariness into the analysis, however the 
continuum result should not depend on this choice once t is fixed 
in physical units. But this is certainly a subleading source of error 
compared to the statistical error due to the rare topology tunneling 
Fig. 2. Demonstration that Wilson flow/lattice renormalization are under control and 
that the dependence of the results on the choice of the flow time decreases when 
the continuum limit is approached.

Fig. 3. Lattice data on the topological susceptibility at Nt = 5, 6, 8 and lattice con-
tinuum extrapolation together with fit of simple power law.

events at high temperatures. In this analysis we choose a temper-
ature dependent flow time for the evaluation of Q 2 as

8t =
{

1/(1.5Tc)
2, T < 1.5

1/T 2, T ≥ 1.5
. (9)

For low/high temperatures this means a temperature indepen-
dent/dependent flow time. This choice is safely in the expected 
plateau region for all temperatures.

The resulting values for the susceptibility are plotted in Fig. 3. 
This plot also gives the result of a global continuum extrapolation 
using a set of temperatures and the 6-parameter power law ansatz

χt = (χ0 + χ ′
0a2)

(
T

T0 + T ′
0a2

)b+b′a2

, (10)

where χ0, T0, and b are fit parameters giving the continuum limit. 
χ ′

0, T ′
0, and b′ are fit parameters describing the deviation from the 

continuum limit. The power law form of the fit is motivated by the 
expected high temperature behavior of the susceptibility. For tem-
peratures close to Tc this is only an empirical fit which seems to 
describe the lattice results quite well. The fit parameter T0 is in-
cluded as a consistency check and should give 1 in units of Tc . This 
is satisfied by the fit result. The variation between different choices 
for the starting temperature of the fit range Tmin/Tc = 1.3, 1.5, 1.7
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Fig. 4. Lattice data on the anharmonicity coefficient b2 of the axion potential com-
pared to its DIGA prediction. The data points are shifted a bit horizontally for better 
visibility.

gives an estimate of the systematic error of the result. The best fit 
parameters are

χ0 = 0.11(2)(1), b = −7.1(4)(2), T0 = 1.02(4)(2), (11)

where the first error is the statistical, the second is the system-
atic. The point-wise continuum extrapolation is consistent with 
the global fit, evidently the latter has smaller errors for large tem-
peratures. Note that though a controlled continuum extrapolation 
is possible using three lattice spacings, estimating the systematic 
uncertainty of this extrapolation would require at least one more 
lattice resolution.

In a recent analysis [15] the topological susceptibility was cal-
culated using the techniques [21,22]. The calculation was carried 
out at two temporal extensions, corresponding to two lattice spac-
ings at each temperature. The exponent b = −5.64(4) was found 
which differs from our value. Note however, that our temperature 
range is larger, thus we are closer to the applicability range of the 
DIGA. Furthermore, the two lattice spacings were not sufficient for 
a controlled continuum extrapolation thus uncertainties related to 
this final step are not included in the result of [15].

We have also determined the second important coefficient b2 of 
the axion potential, characterizing its anharmonicity, by measuring 
the observable

b2 ,t = −〈Q 4〉 − 3〈Q 2〉2

12〈Q 2〉 .

The result is plotted in Fig. 4.

3. Comparison between lattice and DIGA results

In this section, we confront the lattice results with the ones ob-
tained from the DIGA framework. For the sake of completeness let 
us collect first the available formulas for the latter [23–30]. At very 
high temperatures, far above the QCD phase transition, it makes 
sense to infer the θ dependence of QCD from the DIGA, in which 
the partition function, for any n f , can be written as [24],

Z(θ, T ) �
∑
nI ,nĪ

1

nI !nĪ !
Z

nI +nĪ
I (T )exp

[
iθ(nI − nĪ )

]
, (12)

where Z I = Z Ī is the contribution arising from the expansion of 
the path integral around a single instanton I (anti-instanton Ī). It 
follows directly that the potential has the form

V (A, T ) � χ(T ) (1 − cos θ) |θ=A/ f , (13)
A
from which one infers

b2(T ) � − 1

12
. (14)

This can be confronted right-away with our lattice results, cf. Fig. 4. 
Similar to Ref. [13] we find that the prediction from the DIGA for 
b2 is reached already at surprisingly low values of T /Tc � 1.

The whole temperature dependence of the axion potential 
arises in the DIGA through the topological susceptibility, which in 
this case is explicitly given by

χ(T ) � Z I (T ) + Z Ī (T )

V
= 2

∞∫
0

dρ D(ρ) G(πρT ), (15)

in terms of the instanton size distribution at zero temperature, 
D(ρ), and a factor G(πρT ) taking into account finite temperature 
effects. The former is known in the framework of the semiclassi-
cal expansion around the instanton for small αs(μr) ln(ρ μr) and 
ρ mi(μr), where αs is the strong coupling, μr is the renormaliza-
tion scale and mi(μr) are the running quark masses. To one-loop 
accuracy, it is given by2

D(ρ) ≡ dMS

ρ5

(
2π

αMS(μr)

)6

exp

(
− 2π

αMS(μr)

)
(16)

× (ρ μr)
β0

[
1 +O(αMS(μr))

]
,

with

dMS = e5/6

π2
e−4.534122; β0 = 11. (17)

At finite temperature, electric Debye screening prohibits the ex-
istence of large-scale coherent fields in the plasma, leading to the 
factor [26,27],

G(x) ≡ exp
{
−2x2 − 18A(x)

}
, (18)

with

A(x) � − 1

12
ln

[
1 + (πρT )2/3

]
+ α

[
1 + γ (πρT )−3/2

]−8
, (19)

and α = 0.01289764 and γ = 0.15858, in Eq. (15). This factor 
cuts off the integration over the size distribution in Eq. (15) at 
x = πρT ∼ 1 and ensures the validity of the DIGA at large temper-
atures, at which αs(π T ) 
 1.

Collecting all the factors, the topological susceptibility, in the 
one-loop DIGA, reads

χ(T ) � 2 dMS (π T )4
( μr

π T

)11
I

(
2π

αMS(μr)

)6

× exp

(
− 2π

αMS(μr)

)[
1 +O(αMS(μr))

]
, (20)

with

I =
∞∫

0

dx x6 G(x) = 0.267271. (21)

This result, however, still suffers from a sizeable dependence 
on the renormalization scale μr , reflecting the importance of the 
neglected two-loop and higher order contributions. In fact, it is 

2 For quenched QCD the number of light quarks is n f = 0; the general formula 
can be found explicitly in e.g. Ref. [30], which contains a pioneering confrontation 
of cooled lattice data on D(ρ) with the two-loop RG improved DIGA result.
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Fig. 5. Prediction of the topological susceptibility in the DIGA: comparison between 
one-loop and two-loop RGI results. We used the four-loop expression for the run-
ning coupling in the modified minimal subtraction scheme as given in the appendix 
of Ref. [31] and the central value of Tc/


(n f =0)

MS
= 1.26(7) as determined from the 

lattice in Ref. [20].

Table 2
Temperature slopes of the topological susceptibility predicted in the two-loop RGI 
DIGA, for a range of renormalization scales according to Eq. (24).

T /Tc 1.5 2 3 4 5

b (κ = 0.6) −6.04 −6.26 −6.43 −6.50 −6.55
b (κ = 1) −6.37 −6.46 −6.55 −6.59 −6.62
b (κ = 2) −6.55 −6.59 −6.64 −6.67 −6.69

tamed by taking into account the ultraviolet part of the two-loop 
correction. The latter has been calculated in Ref. [29] and shown to 
have exactly the form that the gauge coupling becomes a param-
eter running according to the renormalization group (RG). There-
fore, the ultimate, all order result for the topological susceptibility 
becomes independent of μr , for μr → ∞. At two loop, the correc-
tions amount to a factor

(ρμr)
(β1−12 β0) αMS(μr)/(4π) ; β1 = 102, (22)

in D(ρ). Therefore, this RG improvement can be taken into account 
by replacing the factor I in Eq. (20) by

Ĩ =
( μr

π T

)−30 αMS(μr)/(4π)
∞∫

0

dx x6−30 αMS(μr)/(4π) G(x). (23)

In fact, exploiting the two-loop RG improvement, the μr depen-
dence is heavily reduced, as is obvious from Fig. 5, where we have 
used as a natural renormalization scale

μr = κ/ρm = κπ T /1.2, (24)

with ρm being approximately the maximum of the integrand of Ĩ , 
and varied the remaining free parameter κ between 0.6 and 2. The 
renormalization scale dependence appears to be highly reduced in 
the regimes > 3Tc and < Tc . However, in an intermediate region, 
∼ Tc–2Tc , it is comparable in size to the one at one-loop.

We present in Table 2 the power-law behavior predicted by the 
two-loop RGI DIGA at various temperatures, which can be com-
pared to the fit (11) to the continuum lattice result. As far as the 
overall normalization of the DIGA result for χ is concerned, one 
still expects a large uncertainty in the temperature range available 
from the lattice. In fact, at these temperatures, αs is not small, 
see Table 3. Apart from the ultraviolet part, there will be a finite 
part of the two-loop correction which will affect mainly the over-
all normalization of χ and will depend on the temperature only 
Table 3
Strong coupling constant at μr = 1/ρm for the temperature range covered by the 
lattice.

T /Tc 1 2 3 4 5

αMS(1/ρm) 0.36 0.23 0.19 0.17 0.16

Fig. 6. Rescaled one-loop and two-loop RGI DIGA results compared to lattice contin-
uum extrapolation. The DIGA results shown in Fig. 5 were scaled by a factor K of 
order ten such that they coincide at T /Tc = 2 with the central value of the lattice 
continuum data.

logarithmically. Unfortunately, this finite part is not known, yet. 
Therefore, when comparing to the continuum extrapolated lattice 
results, we allow a multiplicative factor K to account for this un-
certainty, i.e. we absorb the remaining higher loop uncertainties by 
replacing[
1 +O(αMS(μr = κπ T /1.2))

] → K (T /Tc) (25)

in Eq. (20) and the corresponding two-loop RGI expression. Clearly, 
the K -factor should approach unity at very large T /Tc .

Fig. 6 nicely illustrates the agreement between the DIGA and 
the lattice result, if a K -factor of order ten is included.3 More pre-
cisely, fitting the lattice continuum data with the rescaled DIGA 
expression in the temperature range T /Tc ≥ 1, one finds

K = 8.9 ± 0.7 , at 95% CL, (26)

while a fit in the temperature range T /Tc ≥ 2 yields

K = 7.9 ± 3.3 , at 95% CL. (27)

Apparently, in the temperature range accessible to the lattice, the 
higher order corrections to the pre-factor of the DIGA are still ap-
preciable, but there are indications of a trend that the K -factor 
gets smaller, as expected, towards larger values of T /Tc .

The K -factor strongly depends on the value of Tc//

(n f =0)

MS
: it 

reduces to one for Tc//

(n f =0)

MS
� 1.03. However, the latter value 

is about 3 sigma below the central value determined in Ref. [20], 
Tc//


(n f =0)

MS
� 1.26(7).

4. Conclusions

This paper presents lattice and DIGA calculations of the θ and 
temperature dependence of the free energy density of QCD in the 

3 K factors of order ten to fifty are not uncommon even at next-to-leading order 
in ordinary perturbative QCD, see e.g. Ref. [32].
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Fig. 7. Consequence of our findings for axion dark matter from quenched (top) and 
full QCD (bottom). The dark yellow region is excluded because R A > 1 just from 
the misalignment mechanism, cf. Eq. (7), assuming a flat distribution of initial mis-
alignment angles in the observable universe θ ∈ [−π, π ]. The light yellow region 
indicates R A > 1 when string contributions according to Ref. [33] are included. 
In the dark green region axions even including strings give a small contribution 
(R A < 0.1) to dark matter. The light green region indicates R A < 0.1 just from the 
misalignment mechanism. In order to compare the quenched results with the axion 
dark matter scenario we had to transform dimensionless quantities into dimension-
ful ones. For illustrative purposes we use, in the quenched case, Tc = 294 MeV. 
Our quenched lattice results are shown by the blue points and the two-loop RGI 
DIGA prediction by the gray band in the top panel. Since the transition in full QCD 
is a crossover [34], Tc is not unambiguous even in the unquenched case. Using 
the transition temperature defined by the chiral susceptibility, Tc = 147(2)(3) MeV
[35–37], we need K = 9.22 ± 0.6 in order that the two-loop RGI DIGA matches 
χ(Tc)/χ(0) = 1. The blue and gray bands in the lower panel correspond to the 
two-loop RGI DIGA predictions with K = 1 and K = 9.22 ± 0.6, respectively. The 
dashed red line shows the IILM prediction of Ref. [11]. The dashed black lines cor-
respond to fixed axion masses (in units of μeV). Using K = 9.22 and again assuming 
at least ten percent axion contribution to dark matter we can read off from the 
lower panel the range 40 μeV � mA � 930 μeV, while using K = 1 we would get 
50 μeV � mA � 1100 μeV, i.e. only a ∼20% correction for an O(10) K factor uncer-
tainty. (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.)

quenched limit, i.e. for infinite quark masses. In the lattice ap-
proach the temperature ranges from 0.9Tc to 4Tc and thus sig-
nificantly extends former results. The comparison of the quenched 
continuum extrapolated lattice data and the DIGA framework has 
led to two highly non-trivial findings. The first one is the observa-
tion that the exponent of the temperature dependence of χ(T ) is 
correctly described by the DIGA, even all the way down to Tc (at 
least within our error bars), cf. Fig. 7 (top). The second non-trivial 
finding is about the prefactor of this temperature dependence: the 
one-loop based DIGA prefactor is off by a large factor of about 
ten (we call this a K -factor, a familiar notion in perturbative QCD 
predictions). This is expected, since in the considered tempera-
ture range the strong coupling is still sizeable. However, such a 
K -factor uncertainty has not been accounted for in any of the pre-
vious studies of the axion dark matter abundance, e.g. Refs. [8,9]. 
Nevertheless, there is a piece of physics information, which essen-
tially fixes this K -factor. As expected, the topological susceptibility 
changes only a little from T = 0 to T = Tc and drops further on for 
T > Tc . Actually, the quenched data is very well described if one 
takes χ(T )/χ(0) = 1 at T /Tc ∼ 1 in order to fix the K -factor4 and 
then uses the exponent of the DIGA framework for the rest of the 
temperature dependence in the high temperature plasma phase, cf. 
Fig. 7 (top).

Unquenched lattice simulations with physical quark masses are 
about two-to-three orders of magnitude more CPU intensive than 
quenched ones. In addition one expects much smaller topological 
susceptibilities and larger cutoff effects. If one combines all these 
cost factors one ends up with a very CPU demanding project. Thus, 
it is of extreme importance to give an estimate of the ranges in 
temperature and topological susceptibility of interest for axion cos-
mology.

This can be done by exploiting the two highly non-trivial ob-
servations we discussed above: we set χ(Tc)/χ(0) = 1 and use 
the exponent suggested by the DIGA framework, which is readily 
available also for full QCD, for the temperature dependence.5 Our 
finding is shown in the lower panel of Fig. 7, where also the re-
sult with the DIGA prefactor and that of the interacting instanton 
liquid model are depicted. Fortunately, the estimated value of the 
K -factor does not affect very strongly the extraction of the values 
of the axion mass of interest for axion dark matter, because of the 
steepness of the falloff of χ(T ), cf. Fig. 7 (bottom).

There are two important messages, which dominantly influence 
any future lattice study. The first one is that one needs somewhat 
larger T /Tc values than in the quenched case making the calcu-
lation quite CPU demanding. The other important message is that 
using dynamical QCD one has to determine about one order of 
magnitude smaller values of χ(T )/χ(0) than in the quenched case. 
Since already χ(0) is far less in the unquenched case than in the 
quenched one, the smallness of the needed χ(T )/χ(0) makes the 
task even more CPU demanding. The planning of any future un-
quenched project should consider the estimates listed above.
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