000281186 001__ 281186
000281186 005__ 20240610120803.0
000281186 0247_ $$2doi$$a10.1103/PhysRevD.92.094518
000281186 0247_ $$2ISSN$$a0556-2821
000281186 0247_ $$2ISSN$$a1089-4918
000281186 0247_ $$2ISSN$$a1550-2368
000281186 0247_ $$2ISSN$$a1550-7998
000281186 0247_ $$2Handle$$a2128/11118
000281186 0247_ $$2WOS$$aWOS:000365869000003
000281186 0247_ $$2altmetric$$aaltmetric:4260431
000281186 037__ $$aFZJ-2016-00885
000281186 041__ $$aEnglish
000281186 082__ $$a530
000281186 1001_ $$0P:(DE-Juel1)161205$$aShindler, Andrea$$b0$$eCorresponding author$$ufzj
000281186 245__ $$aNucleon electric dipole moment with the gradient flow: The θ -term contribution
000281186 260__ $$a[S.l.]$$bSoc.$$c2015
000281186 264_1 $$2Crossref$$3online$$bAmerican Physical Society (APS)$$c2015-11-30
000281186 264_1 $$2Crossref$$3print$$bAmerican Physical Society (APS)$$c2015-11-01
000281186 3367_ $$2DRIVER$$aarticle
000281186 3367_ $$2DataCite$$aOutput Types/Journal article
000281186 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1563372852_4229
000281186 3367_ $$2BibTeX$$aARTICLE
000281186 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000281186 3367_ $$00$$2EndNote$$aJournal Article
000281186 520__ $$aWe propose a new method to calculate electric dipole moments induced by the strong QCD θ term. The method is based on the gradient flow for gauge fields and is free from renormalization ambiguities. We test our method by computing the nucleon electric dipole moments in pure Yang-Mills theory at several lattice spacings, enabling a first-of-its-kind continuum extrapolation. The method is rather general and can be applied for any quantity computed in a θ vacuum. This first application of the gradient flow has been successful and demonstrates proof-of-principle, thereby providing a novel method to obtain precise results for nucleon and light nuclear electric dipole moments.
000281186 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000281186 536__ $$0G:(GEPRIS)196253076$$aDFG project 196253076 - TRR 110: Symmetrien und Strukturbildung in der Quantenchromodynamik (196253076)$$c196253076$$x1
000281186 536__ $$0G:(DE-Juel1)jias40_20140501$$aBeyond the Standard Model Matrix Elements from lattice QCD (jias40_20140501)$$cjias40_20140501$$fBeyond the Standard Model Matrix Elements from lattice QCD$$x2
000281186 542__ $$2Crossref$$i2015-11-30$$uhttp://link.aps.org/licenses/aps-default-license
000281186 588__ $$aDataset connected to CrossRef
000281186 7001_ $$0P:(DE-Juel1)159481$$aLuu, Tom$$b1$$ufzj
000281186 7001_ $$0P:(DE-Juel1)156527$$ade Vries, Jordy$$b2$$ufzj
000281186 77318 $$2Crossref$$3journal-article$$a10.1103/physrevd.92.094518$$b : American Physical Society (APS), 2015-11-30$$n9$$p094518$$tPhysical Review D$$v92$$x1550-7998$$y2015
000281186 773__ $$0PERI:(DE-600)2844732-3$$a10.1103/PhysRevD.92.094518$$gVol. 92, no. 9, p. 094518$$n9$$p094518$$tPhysical review / D$$v92$$x1550-7998$$y2015
000281186 8564_ $$uhttps://juser.fz-juelich.de/record/281186/files/PhysRevD.92.094518-1.pdf$$yOpenAccess
000281186 8564_ $$uhttps://juser.fz-juelich.de/record/281186/files/PhysRevD.92.094518-1.gif?subformat=icon$$xicon$$yOpenAccess
000281186 8564_ $$uhttps://juser.fz-juelich.de/record/281186/files/PhysRevD.92.094518-1.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000281186 8564_ $$uhttps://juser.fz-juelich.de/record/281186/files/PhysRevD.92.094518-1.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000281186 8564_ $$uhttps://juser.fz-juelich.de/record/281186/files/PhysRevD.92.094518-1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000281186 909CO $$ooai:juser.fz-juelich.de:281186$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000281186 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161205$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000281186 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159481$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000281186 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156527$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000281186 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000281186 9141_ $$y2015
000281186 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000281186 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000281186 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000281186 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000281186 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000281186 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000281186 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000281186 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000281186 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV D : 2014
000281186 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000281186 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000281186 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000281186 9201_ $$0I:(DE-Juel1)IKP-3-20111104$$kIKP-3$$lTheorie der starken Wechselwirkung$$x0
000281186 9201_ $$0I:(DE-Juel1)IAS-4-20090406$$kIAS-4$$lTheorie der Starken Wechselwirkung$$x1
000281186 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x2
000281186 9801_ $$aFullTexts
000281186 980__ $$ajournal
000281186 980__ $$aVDB
000281186 980__ $$aI:(DE-Juel1)IKP-3-20111104
000281186 980__ $$aI:(DE-Juel1)IAS-4-20090406
000281186 980__ $$aI:(DE-82)080012_20140620
000281186 980__ $$aUNRESTRICTED
000281186 981__ $$aI:(DE-Juel1)IAS-4-20090406
000281186 981__ $$aI:(DE-Juel1)IAS-4-20090406