000281219 001__ 281219 000281219 005__ 20240610121038.0 000281219 0247_ $$2arXiv$$aarXiv:1502.06787 000281219 0247_ $$2doi$$a10.1140/epja/i2015-15092-1 000281219 0247_ $$2Handle$$a2128/13247 000281219 0247_ $$2WOS$$aWOS:000358605900001 000281219 0247_ $$2altmetric$$aaltmetric:3729146 000281219 037__ $$aFZJ-2016-00918 000281219 041__ $$aEnglish 000281219 082__ $$a530 000281219 1001_ $$0P:(DE-Juel1)145995$$aLähde, Timo$$b0$$eCorresponding author$$ufzj 000281219 245__ $$aNuclear Lattice Simulations using Symmetry-Sign Extrapolation 000281219 260__ $$aBerlin$$bSpringer$$c2015 000281219 3367_ $$2DRIVER$$aarticle 000281219 3367_ $$2DataCite$$aOutput Types/Journal article 000281219 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1481900173_19381 000281219 3367_ $$2BibTeX$$aARTICLE 000281219 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000281219 3367_ $$00$$2EndNote$$aJournal Article 000281219 500__ $$a25 pages, 12 figures 000281219 520__ $$aProjection Monte Carlo calculations of lattice Chiral Effective Field Theory suffer from sign oscillations to a varying degree dependent on the number of protons and neutrons. Hence, such studies have hitherto been concentrated on nuclei with equal numbers of protons and neutrons, and especially on the alpha nuclei where the sign oscillations are smallest. Here, we introduce the 'symmetry-sign extrapolation' method, which allows us to use the approximate Wigner SU(4) symmetry of the nuclear interaction to systematically extend the Projection Monte Carlo calculations to nuclear systems where the sign problem is severe. We benchmark this method by calculating the ground-state energies of the $^{12}$C, $^6$He and $^6$Be nuclei, and discuss its potential for studies of neutron-rich halo nuclei and asymmetric nuclear matter. 000281219 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0 000281219 536__ $$0G:(GEPRIS)196253076$$aDFG project 196253076 - TRR 110: Symmetrien und Strukturbildung in der Quantenchromodynamik (196253076)$$c196253076$$x1 000281219 536__ $$0G:(EU-Grant)283286$$aHADRONPHYSICS3 - Study of Strongly Interacting Matter (283286)$$c283286$$fFP7-INFRASTRUCTURES-2011-1$$x2 000281219 536__ $$0G:(EU-Grant)259218$$aNUCLEAREFT - Nuclear Physics from Quantum Chromodynamics (259218)$$c259218$$fERC-2010-StG_20091028$$x3 000281219 588__ $$aDataset connected to arXivarXiv 000281219 65027 $$0V:(DE-MLZ)SciArea-200$$2V:(DE-HGF)$$aNuclear Physics$$x0 000281219 7001_ $$0P:(DE-Juel1)159481$$aLuu, Tom$$b1$$ufzj 000281219 7001_ $$0P:(DE-Juel1)156278$$aLee, Dean$$b2$$ufzj 000281219 7001_ $$0P:(DE-Juel1)131252$$aMeissner, Ulf-G.$$b3$$ufzj 000281219 7001_ $$0P:(DE-HGF)0$$aEpelbaum, Evgeny$$b4 000281219 7001_ $$0P:(DE-HGF)0$$aKrebs, Hermann$$b5 000281219 7001_ $$0P:(DE-HGF)0$$aRupak, Gautam$$b6 000281219 773__ $$0PERI:(DE-600)1459066-9$$a10.1140/epja/i2015-15092-1$$p92$$tThe @European physical journal / A$$v51$$x1431-5831$$y2015 000281219 8564_ $$uhttps://juser.fz-juelich.de/record/281219/files/1502.06787v2.pdf$$yOpenAccess 000281219 8564_ $$uhttps://juser.fz-juelich.de/record/281219/files/1502.06787v2.gif?subformat=icon$$xicon$$yOpenAccess 000281219 8564_ $$uhttps://juser.fz-juelich.de/record/281219/files/1502.06787v2.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 000281219 8564_ $$uhttps://juser.fz-juelich.de/record/281219/files/1502.06787v2.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000281219 8564_ $$uhttps://juser.fz-juelich.de/record/281219/files/1502.06787v2.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 000281219 8564_ $$uhttps://juser.fz-juelich.de/record/281219/files/1502.06787v2.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000281219 909CO $$ooai:juser.fz-juelich.de:281219$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire 000281219 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145995$$aForschungszentrum Jülich GmbH$$b0$$kFZJ 000281219 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159481$$aForschungszentrum Jülich GmbH$$b1$$kFZJ 000281219 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156278$$aForschungszentrum Jülich GmbH$$b2$$kFZJ 000281219 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131252$$aForschungszentrum Jülich GmbH$$b3$$kFZJ 000281219 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0 000281219 9141_ $$y2015 000281219 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000281219 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR PHYS J A : 2014 000281219 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000281219 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000281219 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000281219 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000281219 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000281219 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000281219 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000281219 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000281219 920__ $$lyes 000281219 9201_ $$0I:(DE-Juel1)IAS-4-20090406$$kIAS-4$$lTheorie der Starken Wechselwirkung$$x0 000281219 9201_ $$0I:(DE-Juel1)IKP-3-20111104$$kIKP-3$$lTheorie der starken Wechselwirkung$$x1 000281219 9801_ $$aFullTexts 000281219 980__ $$ajournal 000281219 980__ $$aVDB 000281219 980__ $$aUNRESTRICTED 000281219 980__ $$aI:(DE-Juel1)IAS-4-20090406 000281219 980__ $$aI:(DE-Juel1)IKP-3-20111104 000281219 981__ $$aI:(DE-Juel1)IAS-4-20090406 000281219 981__ $$aI:(DE-Juel1)IKP-3-20111104