001     281219
005     20240610121038.0
024 7 _ |a arXiv:1502.06787
|2 arXiv
024 7 _ |a 10.1140/epja/i2015-15092-1
|2 doi
024 7 _ |a 2128/13247
|2 Handle
024 7 _ |a WOS:000358605900001
|2 WOS
024 7 _ |a altmetric:3729146
|2 altmetric
037 _ _ |a FZJ-2016-00918
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Lähde, Timo
|0 P:(DE-Juel1)145995
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Nuclear Lattice Simulations using Symmetry-Sign Extrapolation
260 _ _ |a Berlin
|c 2015
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1481900173_19381
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 25 pages, 12 figures
520 _ _ |a Projection Monte Carlo calculations of lattice Chiral Effective Field Theory suffer from sign oscillations to a varying degree dependent on the number of protons and neutrons. Hence, such studies have hitherto been concentrated on nuclei with equal numbers of protons and neutrons, and especially on the alpha nuclei where the sign oscillations are smallest. Here, we introduce the 'symmetry-sign extrapolation' method, which allows us to use the approximate Wigner SU(4) symmetry of the nuclear interaction to systematically extend the Projection Monte Carlo calculations to nuclear systems where the sign problem is severe. We benchmark this method by calculating the ground-state energies of the $^{12}$C, $^6$He and $^6$Be nuclei, and discuss its potential for studies of neutron-rich halo nuclei and asymmetric nuclear matter.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|x 0
|f POF III
536 _ _ |a DFG project 196253076 - TRR 110: Symmetrien und Strukturbildung in der Quantenchromodynamik (196253076)
|0 G:(GEPRIS)196253076
|c 196253076
|x 1
536 _ _ |a HADRONPHYSICS3 - Study of Strongly Interacting Matter (283286)
|0 G:(EU-Grant)283286
|c 283286
|x 2
|f FP7-INFRASTRUCTURES-2011-1
536 _ _ |a NUCLEAREFT - Nuclear Physics from Quantum Chromodynamics (259218)
|0 G:(EU-Grant)259218
|c 259218
|x 3
|f ERC-2010-StG_20091028
588 _ _ |a Dataset connected to arXivarXiv
650 2 7 |a Nuclear Physics
|0 V:(DE-MLZ)SciArea-200
|2 V:(DE-HGF)
|x 0
700 1 _ |a Luu, Tom
|0 P:(DE-Juel1)159481
|b 1
|u fzj
700 1 _ |a Lee, Dean
|0 P:(DE-Juel1)156278
|b 2
|u fzj
700 1 _ |a Meissner, Ulf-G.
|0 P:(DE-Juel1)131252
|b 3
|u fzj
700 1 _ |a Epelbaum, Evgeny
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Krebs, Hermann
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Rupak, Gautam
|0 P:(DE-HGF)0
|b 6
773 _ _ |a 10.1140/epja/i2015-15092-1
|0 PERI:(DE-600)1459066-9
|p 92
|t The @European physical journal / A
|v 51
|y 2015
|x 1431-5831
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/281219/files/1502.06787v2.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/281219/files/1502.06787v2.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/281219/files/1502.06787v2.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/281219/files/1502.06787v2.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/281219/files/1502.06787v2.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/281219/files/1502.06787v2.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:281219
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)145995
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)159481
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)156278
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131252
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EUR PHYS J A : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-4-20090406
|k IAS-4
|l Theorie der Starken Wechselwirkung
|x 0
920 1 _ |0 I:(DE-Juel1)IKP-3-20111104
|k IKP-3
|l Theorie der starken Wechselwirkung
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-4-20090406
980 _ _ |a I:(DE-Juel1)IKP-3-20111104
981 _ _ |a I:(DE-Juel1)IAS-4-20090406
981 _ _ |a I:(DE-Juel1)IKP-3-20111104


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21