000281231 001__ 281231
000281231 005__ 20210129221650.0
000281231 0247_ $$2doi$$a10.1104/pp.15.00187
000281231 0247_ $$2pmid$$apmid:26077764
000281231 0247_ $$2WOS$$aWOS:000359317400036
000281231 0247_ $$2altmetric$$aaltmetric:4255877
000281231 037__ $$aFZJ-2016-00930
000281231 041__ $$aEnglish
000281231 082__ $$a580
000281231 1001_ $$0P:(DE-HGF)0$$aZhan, Ai$$b0
000281231 245__ $$aReduced lateral root branching density improves drought tolerance in maize
000281231 260__ $$aRockville, Md.$$bSoc.$$c2015
000281231 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1454335900_19496
000281231 3367_ $$2DataCite$$aOutput Types/Journal article
000281231 3367_ $$00$$2EndNote$$aJournal Article
000281231 3367_ $$2BibTeX$$aARTICLE
000281231 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000281231 3367_ $$2DRIVER$$aarticle
000281231 520__ $$aAn emerging paradigm is that root traits that reduce the metabolic costs of soil exploration improve the acquisition of limiting soil resources. Here we test the hypothesis that reduced lateral root branching density will improve drought tolerance in maize (Zea mays) by reducing the metabolic costs of soil exploration, permitting greater axial root elongation, greater rooting depth, and thereby greater water acquisition from drying soil. Maize recombinant inbred lines with contrasting lateral root number and length (FL: few but long; MS: many but short) were grown under water stress in greenhouse mesocosms, in field rainout shelters, and in a second field environment with natural drought. Under water stress in mesocosms, lines with the FL phenotype had substantially less lateral root respiration per unit axial root length, deeper rooting, greater leaf relative water content, greater stomatal conductance, and 50% greater shoot biomass than lines with the MS phenotype. Under water stress in the two field sites, lines with the FL phenotype had deeper rooting, much lighter stem water δ18O signature signifying deeper water capture, 51 to 67% greater shoot biomass at flowering, and 144% greater yield than lines with the MS phenotype. These results entirely support the hypothesis that reduced lateral root branching density improves drought tolerance. The FL lateral root phenotype merits consideration as a selection target to improve the drought tolerance of maize and possibly other cereal crops.
000281231 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000281231 7001_ $$0P:(DE-Juel1)161532$$aSchneider, Hannah$$b1$$ufzj
000281231 7001_ $$0P:(DE-HGF)0$$aLynch, Jonathan$$b2$$eCorresponding author
000281231 773__ $$0PERI:(DE-600)2004346-6$$a10.1104/pp.15.00187$$n4$$p1603–1615$$tPlant physiology$$v168$$x0032-0889$$y2015
000281231 8564_ $$uhttps://juser.fz-juelich.de/record/281231/files/Plant%20Physiol.-2015-Zhan-pp.15.00187.pdf$$yRestricted
000281231 8564_ $$uhttps://juser.fz-juelich.de/record/281231/files/Plant%20Physiol.-2015-Zhan-pp.15.00187.gif?subformat=icon$$xicon$$yRestricted
000281231 8564_ $$uhttps://juser.fz-juelich.de/record/281231/files/Plant%20Physiol.-2015-Zhan-pp.15.00187.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000281231 8564_ $$uhttps://juser.fz-juelich.de/record/281231/files/Plant%20Physiol.-2015-Zhan-pp.15.00187.jpg?subformat=icon-180$$xicon-180$$yRestricted
000281231 8564_ $$uhttps://juser.fz-juelich.de/record/281231/files/Plant%20Physiol.-2015-Zhan-pp.15.00187.jpg?subformat=icon-640$$xicon-640$$yRestricted
000281231 8564_ $$uhttps://juser.fz-juelich.de/record/281231/files/Plant%20Physiol.-2015-Zhan-pp.15.00187.pdf?subformat=pdfa$$xpdfa$$yRestricted
000281231 909CO $$ooai:juser.fz-juelich.de:281231$$pVDB
000281231 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000281231 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000281231 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLANT PHYSIOL : 2014
000281231 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPLANT PHYSIOL : 2014
000281231 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000281231 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000281231 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000281231 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000281231 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000281231 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000281231 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000281231 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000281231 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000281231 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000281231 9141_ $$y2015
000281231 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161532$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000281231 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000281231 920__ $$lyes
000281231 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000281231 980__ $$ajournal
000281231 980__ $$aVDB
000281231 980__ $$aUNRESTRICTED
000281231 980__ $$aI:(DE-Juel1)IBG-2-20101118