TY  - CONF
AU  - Götz, Markus
TI  - Practice & Experience with Scalable Clustering Algorithms for Statistical Earth Science Data Mining
M1  - FZJ-2016-00938
PY  - 2015
AB  - Big Data has plausibly reached the peak of its technology “hype” cycle, at least in geosciences. For a new technology to evolve, mature, and realize its maximum potential, it must successfully survive the transition through the ensuing "trough of disillusionment". Currently, the term “Big Data” seems to be subject to individuals’ interpretations, especially in a community such as ours, i.e. Earth Science, which has had a long, if not the longest, history in trying to use, and make sense out of, large volumes of data. Therefore, we seek abstracts in this session that can help the community 1) to better define the Big Data challenges in Earth Science, 2) to report and describe on-going or up-coming “Big Data” practices, or 3) to identify the opportunities for addressing the challenges and reaping benefits, with an aim to focus our collective efforts on the challenges and nurture the maturation of Big Data in Earth Science.
T2  - European Geosciences Union General Assembly 2015
CY  - 12 Apr 2015 - 17 Apr 2015, Vienna (Austria)
Y2  - 12 Apr 2015 - 17 Apr 2015
M2  - Vienna, Austria
LB  - PUB:(DE-HGF)6
UR  - https://juser.fz-juelich.de/record/281239
ER  -