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The spin decomposition of the proton is a long-standing topic of much interest in hadronic physics.

Lattice QCD has had much success in calculating the connected contributions to the quark spin. However

complete calculations, which necessarily involve gluonic and strange-quark contributions, still present

some challenges. These “disconnected” contributions typically involve small signals hidden against large

statistical backgrounds and rely on computationally intensive stochastic techniques. In this work we

demonstrate how a Feynman-Hellmann approach may be used to calculate such quantities, by measuring

shifts in the proton energy arising from modifications to the QCD action. We find a statistically significant

nonzero result for the disconnected quark spin contribution to the proton of about −5% at a pion mass of

470 MeV.
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I. INTRODUCTION

The simple quark model picture suggests that the total

nucleon spin is comprised entirely in terms of its constitu-

ent quark spins. In contrast, experimental measurements

reveal that the quark spin only generates about one third of

the total nucleon spin [1]. This observation is a clear

representation of the nontrivial dynamics associated with

nonperturbative QCD. Resolving the full composition of

the nucleon spin in terms of the QCD degrees of freedom

remains an active experimental and theoretical pursuit. For

an overview of the status and progress, we refer the reader

to Refs. [2–7].

As a systematically improvable method for studying

nonperturbative properties of QCD, lattice simulations

offer the potential to provide quantitative predictions for

the decomposition of the nucleon spin. For recent numeri-

cal investigations of the nucleon spin, and related matrix

elements, see Refs. [8–16].

In the conventional approach, spin matrix elements are

extracted from three-point correlation functions. Operator

insertions that are directly connected to the quark field

operators of the nucleon interpolators can be reliably

computed using established techniques. The operator

insertions that involve self-contracted fermion lines, which

are essential to isolate the strangeness spin content, for

instance, require the stochastic estimation of the trace of an

all-to-all propagator. Owing to the increased computational

demand of this stochastic estimator and a relatively weak

numerical signal, such disconnected contributions have

often been neglected in lattice simulations. Nevertheless,

substantial progress has been made in recent years [17–21].

For a related calculation involving the vector current matrix

elements we also refer to Ref. [22].

In recent work, we have proposed an alternative to the

conventional three-point function technique for the study of

hadron matrix elements in lattice QCD. By adapting the

Feynman-Hellmann (FH) theorem to the lattice framework,

we are able to isolate matrix elements in terms of an energy

shift in the presence of an appropriate weak external field

[23,24]. This is similar to techniques proposed by e.g.

[25–27]. In Ref. [23] we used the FH relation to extract the

gluonic contribution to the nucleon mass. The application

of FH was further developed in Ref. [24] for the study of

the connected spin contributions in various hadrons. We

have also recently shown how it is possible to compute

flavor-singlet renormalization constants nonperturbatively

by an appropriate application of the FH theorem [28].*
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In the present work, we apply the FH technique to

resolve disconnected spin matrix elements. Whereas the

connected spin contributions could be computed on con-

ventional gauge fields, the disconnected contributions

require the generation of new special-purpose gauge

configurations. The influence of the weak external spin

field is therefore accumulated through the importance

sampling of the hybrid Monte Carlo simulation. While

such new configurations come at significant computational

cost, the computing time is comparable to that required for

reliable sampling using the conventional stochastic

techniques.

The manuscript proceeds as follows: Sec. II reviews the

implementation of the FH theorem for the extraction of spin

matrix elements and summarizes the lattice simulation

parameters. Section III describes the strategy for the

isolation of the relevant matrix elements from the two-

point correlation functions. Results are reported in Sec. IV,

followed by concluding remarks in Sec. V.

II. FEYNMAN-HELLMANN METHODS

AND SIMULATION DETAILS

Here we discuss the FH approach to calculations of

disconnected contributions to matrix elements, in particular

the quark axial charges. For details of previous calculations

of the connected contributions, and the FH technique in

general, see [24].

The quark axial charges are defined by forward matrix

elements of the axial operator,

h~p; ~sjq̄ð0Þγμγ5qð0Þj~p; ~si ¼ 2isμΔq: ð1Þ

We access disconnected contributions to these quantities by

implementing a modification to the fermion part of the

QCD Lagrangian during gauge field generation. Extra

terms are included which involve the axial operator

weighted by a freely varying real parameter λ, applied

equally to all three quark flavors:

L → Lþ λ
X

q¼u;d;s

q̄ γ3γ5q: ð2Þ

This operator satisfies γ5-Hermiticity, and so the functional

determinant of the fermion matrix remains real. Hence we

avoid introducing any sign problems. We choose projection

matrices isolating spin-up and spin-down positive-parity

components of the nucleon correlation function,

Γ� ¼
1

2
ð1þ γ4Þ

1

2
ð1� iγ5γ3Þ; ð3Þ

and by application of the FH relation, find that the

correlator picks up a complex phase which mimics an

imaginary energy component,

E → EðλÞ þ iϕðλÞ: ð4Þ

At first order in λ, there is no shift in the real part of the

energy, and the shift in the phase is exactly equal to the

disconnected contribution to the total quark axial charge,

∂E

∂λ

�

�

�

�

λ¼0

¼ 0;
∂ϕ

∂λ

�

�

�

�

λ¼0

¼ �ΔΣdisc: ð5Þ

The two signs for the phase shift result from the two

different spin projections of Γ�, and we note that changing

the spin projection is equivalent to flipping the sign of

λ:ΔΣdisc is the sum of individual flavor combinations,

ΔΣdisc ¼ Δudisc þ Δddisc þ Δs; ð6Þ

where the strange contribution is purely disconnected, but

we access the total quantity because the operator in Eq. (2)

includes terms for all three simulated quark flavors.

Our strategy for the disconnected calculation, motivated

by Eq. (5), is to generate new gauge ensembles for multiple

values of λ, and determine ΔΣdisc from the linear behavior

of the phase shift in Eq. (4).

In our previous work, we were able to access the

connected part of Eq. (1) by implementing the change in

Eq. (2) to the Dirac matrix before inversion to compute the

quark propagator entering hadron correlation functions (see

[24]). Here the modification is made to the fermion matrix

in the hybrid Monte Carlo algorithm, and so information

about the purely disconnected contributions is accessed.

Simulation details

We use gauge field configurations with 2þ 1 flavors of

nonperturbatively OðaÞ-improved Wilson fermions and a

lattice volume of L3 × T ¼ 323 × 64. The lattice spacing

a ¼ 0.074ð2Þ fm is set using a number of singlet quantities

[29–32]. The clover action used comprises the tree-level

Symanzik improved gluon action together with a stout

smeared fermion action, modified for the implementation

of the FH method [24].

For the results discussed here, we use ensembles with

two sets of hopping parameters, ðκl; κsÞ ¼ ð0.120900;
0.120900Þ and (0.121095, 0.120512), corresponding to

TABLE I. Table of ensembles generated for this work. Two

pion masses with three and two values of λ respectively have been

used. The number of configurations and sources used, as well as

the phase shift measured (discussed in Sec. III and Sec. IV), are

also listed.

ðκl; κsÞ aλ Nconf Nsources ϕ

(0.120900, 0.120900) −0.0125 500 1 0.00140(95)

−0.00625 500 1 0.00002(83)

0.03 500 1 −0.00237ð77Þ
(0.121095, 0.120512) −0.025 600 1 −0.00076ð130Þ

0.05 800 5 0.00027(61)
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pion masses of approximately 470 and 310 MeV. These

have been generated with the modified quark action

described in Eq. (2). The details of these ensembles,

including the values of λ realized, are given in Table I.

III. ANALYSIS TECHNIQUES

A standard zero-momentum projected nucleon correla-

tion function is given by

G�ðtÞ ¼

Z

d3~xΓ�hΩjNðxÞN̄ð0ÞjΩi ⟶

large t
Ae−Et;

where N and N̄ are interpolating operators coupling to the

nucleon ground state, and the projection matrices Γ� are

defined in Eq. (3). For our simulations, we use identical

source/sink smearing and operators, and hence the ampli-

tude A is purely real.

With the modification to the Lagrangian in Eq. (2), an

imaginary component is introduced to the exponential

factor in Eq. (7), in addition to a complex shift in the

amplitude. This shift in the amplitude is not the focus of

this work, but is related to the λ dependence of the wave

function overlap factors. To first order in λ, the amplitude

and energy take the form

A→ Aþ λðΔAþ iΔBÞ; ð7Þ

E → Eþ iλΔΣ; ð8Þ

and the correlation function at large times is given by

G�ðλ; tÞ ⟶

large t
½A� λðΔAþ iΔBÞ�e−½E�iλΔΣ�t; ð9Þ

recalling that changing the spin projection is equivalent to

changing the sign of λ. To extract the quantity λΔΣ,

we form a ratio of real and imaginary parts of spin-up

and spin-down projections,

Rðλ; tÞ ¼
Im½G

−
ðλ; tÞ −Gþðλ; tÞ�

Re½G
−
ðλ; tÞ þGþðλ; tÞ�

⟶

large t sin ðλΔΣtÞ − λ ΔB
A cos ðλΔΣtÞ

cos ðλΔΣtÞ þ λ ΔB
A sin ðλΔΣtÞ

: ð10Þ

The large t behavior of this ratio does not change if we

include second order terms in Eq. (7) and Eq. (8). For the

modification to the Lagrangian in Eq. (2), it can be shown

that the second order shift in the nucleon energy is purely

real, and corrections to Eq. (10) do not appear until Oðλ3Þ.
The ratio in Eq. (10) is what we fit in our analysis. To

determine ground state saturation of this quantity, we

observe that, provided t ≪ 1

jλΔΣj, the behavior of the ratio

is approximately linear in t,

Rðλ; tÞ ¼ λΔΣt − λ
ΔB

A
; a ≪ t ≪

1

jλΔΣj
: ð11Þ

Previous determinations of ΔΣ [17–21] suggest that we

should expect jΔΣj ≈ 0.1, and hence for the largest value of

λ realized on our ensembles (aλ ¼ 0.05), this linear

approximation will hold for times t
a ≪ 200. We introduce

an “effective phase shift,”

ϕeff ¼
1

a
½Rðλ; tþ aÞ − Rðλ; tÞ� ð12Þ

which in the regime discussed has the behavior

ϕeff ¼ λΔΣ; a ≪ t ≪
1

jλΔΣj
: ð13Þ

IV. RESULTS

Figure 1 shows an example plot of the ratio in Eq. (10)

and the corresponding effective phase defined in Eq. (13)

for aλ ¼ 0.03. We observe a clear plateau in the effective

phase for the illustrated fitting region, and corresponding

linear behavior in the ratio. As an aside, the fit indicates a

clearly nonzero value for the t ¼ 0 intercept, confirming

that there is a small but statistically significant imaginary

shift in the wave function overlap factors for this value of λ.

Extracting the phase shift for each value of λ, we

calculate the linear dependence of the phase, shown in

Fig. 2. From Eq. (5) we know that these linear shifts are

directly proportional to ΔΣdisc. Since there is no phase shift

in the zero-field limit, we have used a single-parameter

slope fit to extract the linear term. This analysis is repeated

FIG. 1 (color online). Plots of the ratio in Eq. (10) and the

effective phase shift defined in Eq. (13) for aλ ¼ 0.03,

mπ ≈ 470 MeV. The fitting window (shown in darker blue)

was between time slices 2 and 12. The errors shown are from

a bootstrap analysis of the results, as are the errors on the

displayed fits.
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at the lighter pion mass. Table I includes the calculated

phase shift for each value of λ on the ensembles generated,

and results of the described analyses are summarized in

Table II. Using the methods outlined in [24], we have also

calculated the individual connected contributions to ΔΣ on

these ensembles, and hence are able to calculate the total

(connected and disconnected) value of ΔΣ.

At the lighter mass, we find a result consistent with zero

for ΔΣdisc. This unusual result may be the result of several

different factors. The λ values chosen may simply be too

small, and the phase shift is not able to rise above the

background correlator noise. Figure 3 shows effective

phase plots for the two values of λ realized at this lighter

quark mass, and show that there is no clearly identifiable

plateau at these statistics.

Alternatively, there may be a sign change in either the

light or strange contribution to ΔΣ at some mass in the

range mπ ¼ 310–470 MeV. This is unlikely, however, as

previous results at similar masses have shown a significant

Δs contribution, which would require the light quark

contribution to have a strong quark mass dependence.

From [28] we have both nonsinglet and singlet renorm-

alization factors for the axial current at the SU(3) sym-

metric point,

Z
MSð2 GeVÞ
A;NS ¼ 0.8458ð8Þ; ð14Þ

Z
MSð2 GeVÞ
A;S ¼ 0.8662ð34Þ: ð15Þ

Further calculations at additional quark masses are required

to perform a chiral extrapolation of these quantities;

however the pion mass dependence of these factors is

expected to be mild based on the nonsinglet calculation

of Ref. [33].

To obtain the renormalized total spin contribution we use

the singlet renormalization factor:

ΔΣ
MS ¼ ZMS

A;SΔΣ
latt: ð16Þ

For the purely disconnected quantity, we include the

mixing of the connected and disconnected contributions

under renormalization:

ΔΣ
MS
disc ¼ ZMS

A;SΔΣ
latt
disc þ ðZMS

A;S − ZMS
A;NSÞΔΣ

latt
conn: ð17Þ

Using the renormalization factors from the SU(3) sym-

metric point, we quote our MS results in the final two

columns of Table II.

Finally, since at the SU(3) symmetric point all quarks

contribute exactly the same amount to ΔΣ
MS
disc, then at this

point we can determine Δs:

FIG. 2 (color online). Phase shift as a function of λ for

mπ ≈ 470 MeV.

FIG. 3 (color online). Effective phase plots for aλ ¼ −0.025,

0.05 respectively at mπ ≈ 310 MeV. The results in the second

plot have greater statistics by a factor of 4. Note that the sign of

the fitted value is highly dependent on the fit window.

TABLE II. Table of results at each pion mass for the individual quark axial charges and the disconnected and

full (connected plus disconnected) contribution to the total quark spin. The quantities reported with the

“latt.” superscript are unrenormalized. The final two columns report our renormalized results based on Eqs. (14)

through (17).

ðκl; κsÞ Δulatt Δdlatt ΔΣ
latt
disc ΔΣ

latt
ΔΣ

MSð2 GeVÞ
disc

ΔΣ
MSð2 GeVÞ

(0.120900, 0.120900) 1.001(7) −0.310ð5Þ −0.079ð21Þ 0.612(24) −0.055ð18Þ 0.530(21)

(0.121095, 0.120512) 1.004(10) −0.319ð6Þ 0.014(16) 0.699(25) 0.026(14) 0.605(21)
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ΔsMSðmπ ¼ 470 MeVÞ ¼
1

3
ΔΣ

MS
disc ¼ −0.018ð6Þ: ð18Þ

V. CONCLUDING REMARKS

Culminating in the results of Table II, we have shown

how the FH theorem may be applied to perform full

calculations of hadronic matrix elements.

Quantifying the computational cost of the FH approach

relative to existing techniques is difficult, due to the wide

variety of lattice and algorithmic schemes used. The

calculation of ΔΣdisc presented here at mπ ≈ 470 MeV we

estimate to be roughly equivalent to a total of 30,000

propagator calculations (measurements). This is based on

the number of conjugate-gradient (CG) iterations performed

during gauge field generation and Dirac matrix inversion.

We estimate the results of [18] at a lighter pion mass of

mπ ≈ 285 required of the order of 100,000 measurements,

based on the stated number of CG iterations, and an estimate

of the number of inversions required for the calculation of a

quark propagator at the simulated mass. Similarly the

calculations in [20] are stated to have required approxi-

mately 150,000 measurements, at a pion mass of 370 MeV.

All three techniques produce uncertainties which are

broadly comparable, and hence we conclude that for this

particular calculation, the FHmethod is at least competitive.

Extensions of the FH calculations include higher-

statistics simulations, particularly at the lighter pion mass,

and the generation of ensembles at additional pion masses

to identify the quark mass dependence of ΔΣ. Further

analysis of the existing data should allow for the extraction

of disconnected quark spin contributions for the other octet

baryons and the vector mesons.

The FH technique demonstrated here can be easily

adapted to a variety of other disconnected quantities, such

as the gluonic contribution to angular momentum, which

would otherwise be rather challenging using conventional

approaches.
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