000028127 001__ 28127
000028127 005__ 20170601201542.0
000028127 0247_ $$2WOS$$aWOS:000087153100001
000028127 037__ $$aPreJuSER-28127
000028127 041__ $$aeng
000028127 082__ $$a530
000028127 084__ $$2WoS$$aSpectroscopy
000028127 1001_ $$0P:(DE-HGF)0$$aDombovari, J.$$b0
000028127 245__ $$aMultielement analysis of small plant samples using inductively coupled plasma mass spectrometry
000028127 260__ $$aNorwalk, Conn.$$bPerkin-Elmer$$c2000
000028127 300__ $$a37 - 41
000028127 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000028127 3367_ $$2DataCite$$aOutput Types/Journal article
000028127 3367_ $$00$$2EndNote$$aJournal Article
000028127 3367_ $$2BibTeX$$aARTICLE
000028127 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000028127 3367_ $$2DRIVER$$aarticle
000028127 440_0 $$0701$$aAtomic Spectroscopy$$v21$$x0195-5373
000028127 500__ $$aRecord converted from VDB: 12.11.2012
000028127 520__ $$aInductively coupled plasma mass spectrometry (ICP-MS) offers excellent possibilities for multielement trace analysis of biological material. In the present study, analytical method was developed for the determination of essential elements in small plant tissue samples. Sample preparation was performed with closed-vessel microwave digestion. Oriental Tobacco Leaves CTA-OTL-1 (ICHTJ, Poland) were used as the standard reference material (SRM) and rhodium was applied in ICP-MS as an internal standard element in the multielement aqueous solutions and sample solutions. For most analytes, recoveries from the SRM were 95% to 105%. The method developed was successfully applied for the trace element study of 30 barley tissue samples (8-30 mg). The detection limits ranged (except for Ca) from 0.02 mu g/g (Cs) to 1.1 mu g/g (K) from leaves and roots. The differences in element concentrations between individual plant samples were large compared to the relative standard deviation (RSD) of the results obtained. Small changes in the element composition, induced by modelling external effects on nutrient uptake by blocking the plants K-channels, were observed by ICP-MS mea (sic).
000028127 536__ $$0G:(DE-Juel1)FUEK95$$2G:(DE-HGF)$$aZelluläre Signalverarbeitung$$c42.20.1$$x0
000028127 588__ $$aDataset connected to Web of Science
000028127 650_7 $$2WoSType$$aJ
000028127 7001_ $$0P:(DE-HGF)0$$aBecker, J. S.$$b1
000028127 7001_ $$0P:(DE-Juel1)129349$$aKuhn, A. J.$$b2$$uFZJ
000028127 7001_ $$0P:(DE-Juel1)VDB1472$$aSchröder, W. H.$$b3$$uFZJ
000028127 7001_ $$0P:(DE-HGF)0$$aDietze, H.-J.$$b4
000028127 773__ $$0PERI:(DE-600)840758-7$$gVol. 21, p. 37 - 41$$p37 - 41$$q21<37 - 41$$tAtomic spectroscopy$$v21$$x0195-5373$$y2000
000028127 909CO $$ooai:juser.fz-juelich.de:28127$$pVDB
000028127 9131_ $$0G:(DE-Juel1)FUEK95$$bLebenswissenschaften$$k42.20.1$$lBiologische Informationsverarbeitung$$vZelluläre Signalverarbeitung$$x0
000028127 9141_ $$y2000
000028127 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000028127 9201_ $$0I:(DE-Juel1)VDB281$$d31.12.2000$$gIBI$$kIBI$$lInstitut für Biologische Informationsverarbeitung$$x0
000028127 970__ $$aVDB:(DE-Juel1)21356
000028127 980__ $$aVDB
000028127 980__ $$aConvertedRecord
000028127 980__ $$ajournal
000028127 980__ $$aI:(DE-Juel1)VDB281
000028127 980__ $$aUNRESTRICTED