000281317 001__ 281317
000281317 005__ 20240708132956.0
000281317 037__ $$aFZJ-2016-01016
000281317 041__ $$aEnglish
000281317 1001_ $$0P:(DE-Juel1)136923$$aIvanova, Oxana$$b0$$eCorresponding author
000281317 1112_ $$aSoftComp/ESMI Annual meeting 2015$$cAncona$$d2015-06-08 - 2015-06-12$$gSoftComp2015$$wItaly
000281317 245__ $$aCrystal formation with fractal size distribution of ABPBI membranesin high temperature polyelectrolyte fuel cells
000281317 260__ $$c2015
000281317 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1457605884_9286$$xOther
000281317 3367_ $$033$$2EndNote$$aConference Paper
000281317 3367_ $$2DataCite$$aOther
000281317 3367_ $$2ORCID$$aLECTURE_SPEECH
000281317 3367_ $$2DRIVER$$aconferenceObject
000281317 3367_ $$2BibTeX$$aINPROCEEDINGS
000281317 520__ $$aMany different polymeric materials are investigated in terms of their usability in polymer electrolyte fuel cells (PEFC). One of the most promising classes of PEFC are high temperature polymer electrolyte fuel cells (HT-PEFC) operating at elevated temperatures between 160 – 180 °C. In contrast to the PEFC, operating at temperatures below 100°C (Nafion® being one of the most common polyelectrolyte material used), HT-PEFC provide many advantages such as significantly simplified water management and improved CO tolerance, which enables a wide range of applications in medium power range (~5 kW). The core of the PEFC - proton conducting polyelectrolyte membrane, which separates two electrodes in a fuel cell and acts as a proton conductor. Since the high operation temperatures require polymers with excellent thermal and chemical stability, commercially available poly(2,5-benzimidazole) (ABPBI) membrane attract particular interest. Its aromatic backbone provides an excellent thermal stability, high glass transition temperature and good chemical resistance, but does not provide any intrinsic proton conductivity. Owing to the basic nature of ABPBI it can be impregnated with a high amount of phosphoric acid (PA), which is known to have the highest intrinsic proton conductivity and thus assures high protonic conductivity of the impregnated membrane. Since such proton conducting membrane allows proton transport and prevents the crossover of gases and electrons, its structural and transport properties are of crucial importance for physical and electrical properties of the PEFC. The structural properties of proton conducting poly(2,5-benzimidazole) (ABPBI) membrane in its pristine as well as phosphoric acid (PA) doped form have been investigated with small angle neutron- and X-ray scattering (SANS and SAXS respectively), X-ray diffraction (XRD), polarised light- and transmission electron microscopy (TEM). Obtained results are linked to the proton diffusion in a phosphoric acid doped ABPBI membrane measured with pulsed-field gradient-nuclear magnetic resonance (PFG NMR) technique. Our investigation demonstrates formation of crystalline regions in the ABPBI membrane with fractal size distribution ranging from small (TEM) to large (optical microscopy) length scales.
000281317 536__ $$0G:(DE-HGF)POF3-6215$$a6215 - Soft Matter, Health and Life Sciences (POF3-621)$$cPOF3-621$$fPOF III$$x0
000281317 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x1
000281317 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x2
000281317 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
000281317 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x1
000281317 65017 $$0V:(DE-MLZ)GC-110$$2V:(DE-HGF)$$aEnergy$$x0
000281317 693__ $$0EXP:(DE-MLZ)KWS2-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS2-20140101$$6EXP:(DE-MLZ)NL3ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-2: Small angle scattering diffractometer$$fNL3ao$$x0
000281317 693__ $$0EXP:(DE-MLZ)TEM-MLZ-20151210$$5EXP:(DE-MLZ)TEM-MLZ-20151210$$eTEM-MLZ: Transmission electron microscope at MLZ$$x1
000281317 7001_ $$0P:(DE-Juel1)128533$$aLüke, Wiebke$$b1
000281317 7001_ $$0P:(DE-Juel1)143790$$aMajerus, Anne$$b2
000281317 7001_ $$0P:(DE-Juel1)130777$$aKrutyeva, Margarita$$b3
000281317 7001_ $$0P:(DE-Juel1)145431$$aSzekely, Noemi$$b4
000281317 7001_ $$0P:(DE-Juel1)130902$$aPyckhout-Hintzen, Wim$$b5
000281317 7001_ $$0P:(DE-Juel1)130507$$aAppavou, Marie-Sousai$$b6
000281317 7001_ $$0P:(DE-Juel1)130849$$aMonkenbusch, Michael$$b7
000281317 7001_ $$0P:(DE-Juel1)131067$$aZorn, Reiner$$b8
000281317 7001_ $$0P:(DE-Juel1)129883$$aLehnert, Werner$$b9$$ufzj
000281317 7001_ $$0P:(DE-Juel1)130718$$aHolderer, Olaf$$b10
000281317 909CO $$ooai:juser.fz-juelich.de:281317$$pVDB$$pVDB:MLZ
000281317 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136923$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000281317 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128533$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000281317 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130777$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000281317 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145431$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000281317 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130902$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000281317 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130507$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000281317 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130849$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000281317 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131067$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000281317 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129883$$aForschungszentrum Jülich GmbH$$b9$$kFZJ
000281317 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130718$$aForschungszentrum Jülich GmbH$$b10$$kFZJ
000281317 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6215$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x0
000281317 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x1
000281317 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x2
000281317 9141_ $$y2016
000281317 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000281317 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II$$lJCNS-FRM-II$$x0
000281317 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kNeutronenstreuung ; JCNS-1$$lNeutronenstreuung $$x1
000281317 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x2
000281317 980__ $$aconf
000281317 980__ $$aVDB
000281317 980__ $$aUNRESTRICTED
000281317 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000281317 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000281317 980__ $$aI:(DE-Juel1)IEK-3-20101013
000281317 981__ $$aI:(DE-Juel1)ICE-2-20101013
000281317 981__ $$aI:(DE-Juel1)IEK-3-20101013