000281344 001__ 281344
000281344 005__ 20240610120838.0
000281344 0247_ $$2doi$$a10.1103/PhysRevLett.115.062001
000281344 0247_ $$2ISSN$$a0031-9007
000281344 0247_ $$2ISSN$$a1079-7114
000281344 0247_ $$2arXiv$$aarXiv:1502.02295
000281344 0247_ $$2Handle$$a2128/9772
000281344 0247_ $$2WOS$$aWOS:000358937600004
000281344 0247_ $$2altmetric$$aaltmetric:3445084
000281344 0247_ $$2pmid$$apmid:26296110
000281344 037__ $$aFZJ-2016-01041
000281344 041__ $$aEnglish
000281344 082__ $$a550
000281344 1001_ $$0P:(DE-HGF)0$$aGuo, F.-K.$$b0
000281344 245__ $$aElectric Dipole Moment of the Neutron from 2 + 1 Flavor Lattice QCD
000281344 260__ $$aCollege Park, Md.$$bAPS$$c2015
000281344 3367_ $$2DRIVER$$aarticle
000281344 3367_ $$2DataCite$$aOutput Types/Journal article
000281344 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1511939933_9732
000281344 3367_ $$2BibTeX$$aARTICLE
000281344 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000281344 3367_ $$00$$2EndNote$$aJournal Article
000281344 500__ $$a12 pages, 8 figures, matches PRL published version
000281344 520__ $$aWe compute the electric dipole moment d_n of the neutron from a fully dynamical simulation of lattice QCD with 2+1 flavors of clover fermions and nonvanishing theta term. The latter is rotated into the pseudoscalar density in the fermionic action using the axial anomaly. To make the action real, the vacuum angle theta is taken to be purely imaginary. The physical value of d_n is obtained by analytic continuation. We find d_n = -3.8(2)(9) x 10^{-16} [theta e cm], which, when combined with the experimental limit on d_n, leads to the upper bound theta < 7.6 x 10^{-11}.
000281344 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000281344 536__ $$0G:(GEPRIS)196253076$$aDFG project 196253076 - TRR 110: Symmetrien und Strukturbildung in der Quantenchromodynamik (196253076)$$c196253076$$x1
000281344 536__ $$0G:(DE-Juel1)hde12_20141101$$aDisconnected Contributions to Matrix Elements and Renormalization factors (hde12_20141101)$$chde12_20141101$$fDisconnected Contributions to Matrix Elements and Renormalization factors$$x2
000281344 588__ $$aDataset connected to arXivarXiv, CrossRef
000281344 7001_ $$0P:(DE-HGF)0$$aHorsley, R.$$b1
000281344 7001_ $$0P:(DE-Juel1)131252$$aMeißner, U.-G.$$b2$$ufzj
000281344 7001_ $$0P:(DE-HGF)0$$aNakamura, Y.$$b3
000281344 7001_ $$0P:(DE-HGF)0$$aPerlt, H.$$b4
000281344 7001_ $$0P:(DE-HGF)0$$aRakow, P. E. L.$$b5
000281344 7001_ $$0P:(DE-HGF)0$$aSchierholz, G.$$b6
000281344 7001_ $$0P:(DE-HGF)0$$aSchiller, A.$$b7
000281344 7001_ $$0P:(DE-HGF)0$$aZanotti, J. M.$$b8
000281344 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.115.062001$$gVol. 115, no. 6, p. 062001$$n6$$p062001$$tPhysical review letters$$v115$$x1079-7114$$y2015
000281344 8564_ $$uhttps://juser.fz-juelich.de/record/281344/files/PhysRevLett.115.062001.pdf$$yOpenAccess
000281344 8564_ $$uhttps://juser.fz-juelich.de/record/281344/files/PhysRevLett.115.062001.gif?subformat=icon$$xicon$$yOpenAccess
000281344 8564_ $$uhttps://juser.fz-juelich.de/record/281344/files/PhysRevLett.115.062001.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000281344 8564_ $$uhttps://juser.fz-juelich.de/record/281344/files/PhysRevLett.115.062001.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000281344 8564_ $$uhttps://juser.fz-juelich.de/record/281344/files/PhysRevLett.115.062001.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000281344 8564_ $$uhttps://juser.fz-juelich.de/record/281344/files/PhysRevLett.115.062001.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000281344 909CO $$ooai:juser.fz-juelich.de:281344$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000281344 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131252$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000281344 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000281344 9141_ $$y2015
000281344 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000281344 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV LETT : 2013
000281344 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPHYS REV LETT : 2013
000281344 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000281344 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000281344 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000281344 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000281344 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000281344 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000281344 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000281344 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000281344 9201_ $$0I:(DE-Juel1)IAS-4-20090406$$kIAS-4$$lTheorie der Starken Wechselwirkung$$x0
000281344 9201_ $$0I:(DE-Juel1)IKP-3-20111104$$kIKP-3$$lTheorie der starken Wechselwirkung$$x1
000281344 9201_ $$0I:(DE-Juel1)NIC-20090406$$kNIC$$lJohn von Neumann - Institut für Computing$$x2
000281344 9801_ $$aUNRESTRICTED
000281344 9801_ $$aFullTexts
000281344 980__ $$ajournal
000281344 980__ $$aVDB
000281344 980__ $$aI:(DE-Juel1)IAS-4-20090406
000281344 980__ $$aI:(DE-Juel1)IKP-3-20111104
000281344 980__ $$aI:(DE-Juel1)NIC-20090406
000281344 980__ $$aUNRESTRICTED
000281344 981__ $$aI:(DE-Juel1)IAS-4-20090406
000281344 981__ $$aI:(DE-Juel1)IKP-3-20111104