001     281344
005     20240610120838.0
024 7 _ |a 10.1103/PhysRevLett.115.062001
|2 doi
024 7 _ |a 0031-9007
|2 ISSN
024 7 _ |a 1079-7114
|2 ISSN
024 7 _ |a arXiv:1502.02295
|2 arXiv
024 7 _ |a 2128/9772
|2 Handle
024 7 _ |a WOS:000358937600004
|2 WOS
024 7 _ |a altmetric:3445084
|2 altmetric
024 7 _ |a pmid:26296110
|2 pmid
037 _ _ |a FZJ-2016-01041
041 _ _ |a English
082 _ _ |a 550
100 1 _ |a Guo, F.-K.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Electric Dipole Moment of the Neutron from 2 + 1 Flavor Lattice QCD
260 _ _ |a College Park, Md.
|c 2015
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1511939933_9732
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 12 pages, 8 figures, matches PRL published version
520 _ _ |a We compute the electric dipole moment d_n of the neutron from a fully dynamical simulation of lattice QCD with 2+1 flavors of clover fermions and nonvanishing theta term. The latter is rotated into the pseudoscalar density in the fermionic action using the axial anomaly. To make the action real, the vacuum angle theta is taken to be purely imaginary. The physical value of d_n is obtained by analytic continuation. We find d_n = -3.8(2)(9) x 10^{-16} [theta e cm], which, when combined with the experimental limit on d_n, leads to the upper bound theta < 7.6 x 10^{-11}.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|x 0
|f POF III
536 _ _ |a DFG project 196253076 - TRR 110: Symmetrien und Strukturbildung in der Quantenchromodynamik (196253076)
|0 G:(GEPRIS)196253076
|c 196253076
|x 1
536 _ _ |a Disconnected Contributions to Matrix Elements and Renormalization factors (hde12_20141101)
|0 G:(DE-Juel1)hde12_20141101
|c hde12_20141101
|x 2
|f Disconnected Contributions to Matrix Elements and Renormalization factors
588 _ _ |a Dataset connected to arXivarXiv, CrossRef
700 1 _ |a Horsley, R.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Meißner, U.-G.
|0 P:(DE-Juel1)131252
|b 2
|u fzj
700 1 _ |a Nakamura, Y.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Perlt, H.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Rakow, P. E. L.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Schierholz, G.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Schiller, A.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Zanotti, J. M.
|0 P:(DE-HGF)0
|b 8
773 _ _ |a 10.1103/PhysRevLett.115.062001
|g Vol. 115, no. 6, p. 062001
|0 PERI:(DE-600)1472655-5
|n 6
|p 062001
|t Physical review letters
|v 115
|y 2015
|x 1079-7114
856 4 _ |u https://juser.fz-juelich.de/record/281344/files/PhysRevLett.115.062001.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/281344/files/PhysRevLett.115.062001.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/281344/files/PhysRevLett.115.062001.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/281344/files/PhysRevLett.115.062001.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/281344/files/PhysRevLett.115.062001.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/281344/files/PhysRevLett.115.062001.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:281344
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131252
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV LETT : 2013
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b PHYS REV LETT : 2013
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IAS-4-20090406
|k IAS-4
|l Theorie der Starken Wechselwirkung
|x 0
920 1 _ |0 I:(DE-Juel1)IKP-3-20111104
|k IKP-3
|l Theorie der starken Wechselwirkung
|x 1
920 1 _ |0 I:(DE-Juel1)NIC-20090406
|k NIC
|l John von Neumann - Institut für Computing
|x 2
980 1 _ |a UNRESTRICTED
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-4-20090406
980 _ _ |a I:(DE-Juel1)IKP-3-20111104
980 _ _ |a I:(DE-Juel1)NIC-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IAS-4-20090406
981 _ _ |a I:(DE-Juel1)IKP-3-20111104


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21