000281358 001__ 281358
000281358 005__ 20240711085624.0
000281358 0247_ $$2doi$$a10.1016/j.apsusc.2016.01.046
000281358 0247_ $$2ISSN$$a0169-4332
000281358 0247_ $$2ISSN$$a1873-5584
000281358 0247_ $$2WOS$$aWOS:000384573100043
000281358 0247_ $$2altmetric$$aaltmetric:5043444
000281358 037__ $$aFZJ-2016-01055
000281358 082__ $$a670
000281358 1001_ $$0P:(DE-HGF)0$$aHryha, Eduard$$b0$$eCorresponding author
000281358 245__ $$aSurface chemical state of Ti powders and its alloys: Effect of storage conditions and alloy composition
000281358 260__ $$aAmsterdam$$bElsevier$$c2016
000281358 3367_ $$2DRIVER$$aarticle
000281358 3367_ $$2DataCite$$aOutput Types/Journal article
000281358 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1475581025_8491
000281358 3367_ $$2BibTeX$$aARTICLE
000281358 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000281358 3367_ $$00$$2EndNote$$aJournal Article
000281358 520__ $$aHigh affinity of titanium to oxygen in combination with the high surface area of the powder results in tremendous powder reactivity and almost inevitable presence of passivation oxide film on the powder surface. Oxide film is formed during the short exposure of the powder to the environment at even a trace amount of oxygen. Hence, surface state of the powder determines its usefulness for powder metallurgy processing. Present study is focused on the evaluation of the surface oxide state of the Ti, NiTi and Ti6Al4V powders in as-atomized state and after storage under air or Ar for up to eight years.Powder surface oxide state was studied by X-ray photoelectron spectroscopy (XPS) and high resolution scanning electron microscopy (HR SEM). Results indicate that powder in as-atomized state is covered by homogeneous Ti-oxide layer with the thickness of ∼2.9 nm for Ti, ∼3.2 nm and ∼4.2 nm in case of Ti6Al4V and NiTi powders, respectively. Exposure to the air results in oxide growth of about 30% in case of Ti and only about 10% in case of NiTi and Ti6Al4V. After the storage under the dry air for two years oxide growth of only about 3-4% was detected in case of both, Ti and NiTi powders. NiTi powder, stored under the dry air for eight years, indicates oxide thickness of about 5.3 nm, which is about 30% thicker in comparison with the as-atomized powder. Oxide thickness increase of only ∼15% during the storage for eight years in comparison with the powder, shortly exposed to the air after manufacturing, was detected.Results indicate a high passivation of the Ti, Ti6Al4V and NiTi powder surface by homogeneous layer of Ti-oxide formed even during short exposure of the powder to the air.
000281358 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000281358 588__ $$aDataset connected to CrossRef
000281358 7001_ $$0P:(DE-HGF)0$$aShvab, Ruslan$$b1
000281358 7001_ $$0P:(DE-Juel1)129591$$aBram, Martin$$b2
000281358 7001_ $$0P:(DE-Juel1)140492$$aBitzer, Martin$$b3
000281358 7001_ $$0P:(DE-HGF)0$$aNyborg, Lars$$b4
000281358 773__ $$0PERI:(DE-600)2002520-8$$a10.1016/j.apsusc.2016.01.046$$gp. S0169433216000726$$nPart A$$p294$$tApplied surface science$$v388$$x0169-4332$$y2016
000281358 8564_ $$uhttps://juser.fz-juelich.de/record/281358/files/1-s2.0-S0169433216000726-main.pdf$$yRestricted
000281358 8564_ $$uhttps://juser.fz-juelich.de/record/281358/files/1-s2.0-S0169433216000726-main.gif?subformat=icon$$xicon$$yRestricted
000281358 8564_ $$uhttps://juser.fz-juelich.de/record/281358/files/1-s2.0-S0169433216000726-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000281358 8564_ $$uhttps://juser.fz-juelich.de/record/281358/files/1-s2.0-S0169433216000726-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000281358 8564_ $$uhttps://juser.fz-juelich.de/record/281358/files/1-s2.0-S0169433216000726-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000281358 8564_ $$uhttps://juser.fz-juelich.de/record/281358/files/1-s2.0-S0169433216000726-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000281358 909CO $$ooai:juser.fz-juelich.de:281358$$pVDB
000281358 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129591$$aForschungszentrum Jülich$$b2$$kFZJ
000281358 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000281358 9141_ $$y2016
000281358 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000281358 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000281358 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL SURF SCI : 2014
000281358 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000281358 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000281358 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000281358 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000281358 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000281358 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000281358 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000281358 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000281358 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000281358 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000281358 980__ $$ajournal
000281358 980__ $$aVDB
000281358 980__ $$aUNRESTRICTED
000281358 980__ $$aI:(DE-Juel1)IEK-1-20101013
000281358 981__ $$aI:(DE-Juel1)IMD-2-20101013