000281400 001__ 281400
000281400 005__ 20210129221730.0
000281400 037__ $$aFZJ-2016-01097
000281400 041__ $$aEnglish
000281400 1001_ $$0P:(DE-Juel1)162347$$aSchmitz-Antoniak, Carolin$$b0$$ufzj
000281400 1112_ $$aInternational Conference on X-ray Absorption Fine Structure (XAFS16)$$cKarlsruhe$$d2015-08-23 - 2015-08-28$$wGermany
000281400 245__ $$aElectric in‐plane polarization in multiferroic CoFe$_2$O$_4$/BaTiO$_3$ nanocomposite tuned by magnetic fields
000281400 260__ $$c2015
000281400 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1453907780_21155$$xOther
000281400 3367_ $$033$$2EndNote$$aConference Paper
000281400 3367_ $$2DataCite$$aOther
000281400 3367_ $$2ORCID$$aLECTURE_SPEECH
000281400 3367_ $$2DRIVER$$aconferenceObject
000281400 3367_ $$2BibTeX$$aINPROCEEDINGS
000281400 520__ $$aFerrimagnetic CoFe2O4 nanopillars embedded in a ferroelectric BaTiO3 matrix are an example for a two‐phase magnetoelectrically coupled system. They operate at room temperature and are free of any resource‐critical rare‐earth element, which makes them interesting for potential applications. Prior studies succeeded in showing strain‐mediated coupling between the two subsystems. In particular, the electric properties can be tuned by magnetic fields and the magnetic properties by electric fields. Here we take the analysis of the coupling to a new level utilizing soft X-ray absorption spectroscopy and its associated linear dichroism. We demonstrate that an in‐plane magnetic field breaks the tetragonal symmetry of the (1,3)‐type CoFe2O4/BaTiO3 structures and discuss it in terms of off‐diagonal magnetostrictive‐piezoelectric coupling. This coupling creates staggered in‐plane components of the electric polarization, which are stable even at magnetic remanence due to hysteretic behavior of structural changes in the BaTiO3 matrix.
000281400 536__ $$0G:(DE-HGF)POF3-522$$a522 - Controlling Spin-Based Phenomena (POF3-522)$$cPOF3-522$$fPOF III$$x0
000281400 7001_ $$0P:(DE-HGF)0$$aWende, H.$$b1
000281400 7001_ $$0P:(DE-HGF)0$$aSchmitz, D.$$b2
000281400 7001_ $$0P:(DE-HGF)0$$aBorisov, P.$$b3
000281400 7001_ $$0P:(DE-HGF)0$$ade Groot, F. M. F.$$b4
000281400 7001_ $$0P:(DE-HGF)0$$aWarland, A.$$b5
000281400 7001_ $$0P:(DE-HGF)0$$aKrumme, B.$$b6
000281400 7001_ $$0P:(DE-HGF)0$$aFeyerherm, R.$$b7
000281400 7001_ $$0P:(DE-HGF)0$$aDudzik, E.$$b8
000281400 7001_ $$0P:(DE-HGF)0$$aKleemann, W.$$b9
000281400 909CO $$ooai:juser.fz-juelich.de:281400$$pVDB
000281400 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162347$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000281400 9131_ $$0G:(DE-HGF)POF3-522$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000281400 9141_ $$y2015
000281400 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000281400 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x0
000281400 980__ $$aconf
000281400 980__ $$aVDB
000281400 980__ $$aUNRESTRICTED
000281400 980__ $$aI:(DE-Juel1)PGI-6-20110106