000281437 001__ 281437
000281437 005__ 20240610120611.0
000281437 0247_ $$2doi$$a10.1073/pnas.1510973112
000281437 0247_ $$2WOS$$aWOS:000366404200043
000281437 0247_ $$2Handle$$a2128/19749
000281437 0247_ $$2altmetric$$aaltmetric:4882465
000281437 0247_ $$2pmid$$apmid:26627719
000281437 037__ $$aFZJ-2016-01130
000281437 041__ $$aEnglish
000281437 082__ $$a000
000281437 1001_ $$0P:(DE-HGF)0$$aGarcia, Simon$$b0
000281437 245__ $$aPhysics of active jamming during collective cellular motion in a monolayer
000281437 260__ $$aWashington, DC$$bNational Acad. of Sciences$$c2015
000281437 3367_ $$2DRIVER$$aarticle
000281437 3367_ $$2DataCite$$aOutput Types/Journal article
000281437 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1454509846_9285
000281437 3367_ $$2BibTeX$$aARTICLE
000281437 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000281437 3367_ $$00$$2EndNote$$aJournal Article
000281437 520__ $$aAlthough collective cell motion plays an important role, for example during wound healing, embryogenesis, or cancer progression, the fundamental rules governing this motion are still not well understood, in particular at high cell density. We study here the motion of human bronchial epithelial cells within a monolayer, over long times. We observe that, as the monolayer ages, the cells slow down monotonously, while the velocity correlation length first increases as the cells slow down but eventually decreases at the slowest motions. By comparing experiments, analytic model, and detailed particle-based simulations, we shed light on this biological amorphous solidification process, demonstrating that the observed dynamics can be explained as a consequence of the combined maturation and strengthening of cell-cell and cell-substrate adhesions. Surprisingly, the increase of cell surface density due to proliferation is only secondary in this process. This analysis is confirmed with two other cell types. The very general relations between the mean cell velocity and velocity correlation lengths, which apply for aggregates of self-propelled particles, as well as motile cells, can possibly be used to discriminate between various parameter changes in vivo, from noninvasive microscopy data.
000281437 536__ $$0G:(DE-HGF)POF3-553$$a553 - Physical Basis of Diseases (POF3-553)$$cPOF3-553$$fPOF III$$x0
000281437 7001_ $$0P:(DE-HGF)0$$aHannezo, Edouard$$b1
000281437 7001_ $$0P:(DE-Juel1)130629$$aElgeti, Jens$$b2$$ufzj
000281437 7001_ $$0P:(DE-HGF)0$$aJoanny, Jean-Francois$$b3
000281437 7001_ $$0P:(DE-HGF)0$$aSilberzan, Pascal$$b4
000281437 7001_ $$0P:(DE-HGF)0$$aGov, Nir S.$$b5
000281437 773__ $$0PERI:(DE-600)1461794-8$$a10.1073/pnas.1510973112$$p15314-15319$$tProceedings of the National Academy of Sciences of the United States of America$$v112$$x0027-8424$$y2015
000281437 8564_ $$uhttps://juser.fz-juelich.de/record/281437/files/15314.full.pdf$$yOpenAccess
000281437 8564_ $$uhttps://juser.fz-juelich.de/record/281437/files/15314.full.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000281437 909CO $$ooai:juser.fz-juelich.de:281437$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000281437 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130629$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000281437 9131_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0
000281437 9141_ $$y2015
000281437 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000281437 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000281437 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000281437 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bP NATL ACAD SCI USA : 2014
000281437 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000281437 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000281437 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000281437 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000281437 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000281437 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000281437 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bP NATL ACAD SCI USA : 2014
000281437 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000281437 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000281437 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000281437 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000281437 9201_ $$0I:(DE-Juel1)IAS-2-20090406$$kIAS-2$$lTheorie der Weichen Materie und Biophysik$$x0
000281437 9201_ $$0I:(DE-Juel1)ICS-2-20110106$$kICS-2$$lTheorie der Weichen Materie und Biophysik$$x1
000281437 9801_ $$aFullTexts
000281437 980__ $$ajournal
000281437 980__ $$aVDB
000281437 980__ $$aUNRESTRICTED
000281437 980__ $$aI:(DE-Juel1)IAS-2-20090406
000281437 980__ $$aI:(DE-Juel1)ICS-2-20110106
000281437 981__ $$aI:(DE-Juel1)IBI-5-20200312
000281437 981__ $$aI:(DE-Juel1)IAS-2-20090406
000281437 981__ $$aI:(DE-Juel1)ICS-2-20110106