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Abstract

Parallel computers withSMP nodes provide both multithreading and message passing as
their modes of parallel execution. This thesis addresses the complexity of the performance
problems that can arise in these systems by formally characterizing the problems in terms
of execution patterns that represent situations of inefficient behavior. These patterns are
specified as compound events which are input for an automaticanalysis process that rec-
ognizes and quantifies the inefficient behavior in event traces. Mechanisms that hide the
complex relationships within compound-event specifications allow a simple description of
complex inefficient behavior on a high level of abstraction.

The analysis process automatically transforms event traces into a scalable representation of
performance behavior, allowing a fast and easy identification of performance bottlenecks
on varying levels of granularity along the dimensions of problem type, call graph, and
process or thread. The uniform mapping of performance behavior onto the correspond-
ing fraction of execution time enables the convenient correlation of different performance
behavior using only a single integrated view. A modular analysis architecture separates
the performance-problem specifications from the actual analysis process, simplifying the
extension and customization of predefined performance problems to meet individual (e.g.,
application-specific) needs.

To demonstrate the methodology in real parallel-programming environments, it was ap-
plied to the programming interfacesMPI, OpenMP, and their combination. To show the
methodology’s usefulness in practice, the performance-tool prototypeEXPERT was imple-
mented and successfully tested for several real-world applications.





Kurzfassung

Parallelrechner mitSMP-Knoten bieten sowohl Multithreading als auch Message-Passing
als parallele Programmiermodelle. Diese Dissertationsschrift behandelt die potenziel-
len Leistungsprobleme solcher Systeme mit Hilfe einer formalen Beschreibung von
Ausführungsmustern, die Situationen ineffizienten Verhaltens repräsentieren. Die Muster
werden als Verbundereignisse spezifiziert und dienen als Eingabe für einen automatischen
Analyseprozess, der das ineffiziente Verhalten in Ereignisspuren nachweist und quantifi-
ziert. Mechanismen zur Kapselung komplexer Beziehungen innerhalb der Verbundereig-
nisspezifikationen erlauben eine einfache Beschreibung komplexen ineffizienten Verhal-
tens auf hohem Abstraktionsniveau.

Der Analyseprozess transformiert Ereignisspuren automatisch in eine skalierbare Re-
präsentation des Leistungsverhaltens, die eine schnelleund einfache Identifizierung von
Leistungsengpässen auf beliebigen Granularitätsstufen entlang der Dimensionen Problem-
typ, Aufrufpfad, und Prozess oder Thread erlaubt. Die einheitliche Abbildung des Lei-
stungsverhaltens auf den entsprechenden Anteil der Ausführungszeit ermöglicht den mühe-
losen Vergleich unterschiedlichen Verhaltens in einer einzigen integrierten Darstellung.
Eine modulare Analysearchitektur separiert die Spezifikationen der Leistungsprobleme
vom eigentlichen Analyseprozess, was die Erweiterung und Anpassung vordefinierter Lei-
stungsprobleme an individuelle (z.B. anwendungsspezifische) Bedürfnisse gestattet.

Zur Verwendung in realen parallelen Programmierumgebungen wurde dieser Ansatz auf
die ProgrammierschnittstellenMPI, OpenMP und deren Kombination angewandt. Zum
Nachweis der Praxistauglichkeit wurde das LeistungsanalysewerkzeugEXPERT prototy-
pisch implementiert und erfolgreich anhand realer Anwendungen getestet.
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Chapter 1

Introduction

During the last few decades parallel computing has proved tobe an essential tool for the
solution of complex scientific and economic problems. The numerical simulation of physi-
cal, chemical, and biological processes provides insight into phenomena that either cannot
be addressed by analytical or experimental methods or that require experiments that are too
expensive or dangerous. Parallel computing also plays a keyrole in achieving and preserv-
ing scientific and thus economic competitiveness. As more powerful computing resources
become available, grand-challenge applications, such as protein-structure prediction and
weather prediction, will become reality.

A parallel computer effectively multiplies the performance of single processors. Unfortu-
nately, real applications frequently fail to sustain even amajor fraction of the theoretical
performance limit that is possible on a given parallel machine. The reason for this gap
between peak and real performance lies in the complex interactions among the hardware,
system software, programming interface, and algorithm. Understanding the effects of these
interactions is crucial for optimizing parallel programs and thus for a better utilization of
the available computer hardware.

1.1 Architectures of Parallel Computers

Parallel computers are computers with multiple processorsthat are able to work jointly
on one or more tasks at the same time. One common way to classify parallel comput-
ers is based on memory architecture. There are two major classes: shared memoryand
distributed memory.

Shared-memory machines, which are also referred to assymmetric multiprocessorsor
shared-memory multiprocessors(SMPs) [41], have symmetric access to one shared address

1



2 CHAPTER 1. INTRODUCTION

space and are controlled by one operating-system image. This makes it possible, for exam-
ple, to suspend a process on one processor and to resume it on another processor without
copying or moving its address space.

SMPs that share one physical memory belong to the class ofUMA (Uniform Memory Ac-
cess) computers and provide symmetric and equally fast access toall addresses of the
shared address space. Examples areCRAY T90, IBM 390,SUN E10000.

SMPs that provide a shared address space based on physically distributed memory [31]
have variable access times to a memory address depending on the physical distance to
that address. These machines are calledNUMA (Non-Uniform Memory Access) computers.
ccNUMA (cache coherent Non-Uniform Memory Access) computers are similar toNUMA

computers but provide a mechanism for local buffering of remote memory contents in a
cache after the first access so that subsequent accesses to the same memory location can
be much faster. Cache-coherence protocols ensure that modifications of cached or original
data occur consistently. Examples areSGI ORIGIN 2000 andHP V-Class.

Distributed-memory parallel systems, which are often referred to as asmassively parallel
processors(MPPs) when larger numbers of processors are used, do not providea shared
address space. Each memory is local to one processor and not accessible from another
processor. Message passing is used to move data between processors. However, some
systems provide mechanisms to access remote memory locations on the hardware level.
Examples areCRAY T3E andIBM RS/6000-SP.

1.2 Coupled SMP Systems

In the past,MPP systems dominated the scientific computing market, but theyclaimed only
a minor share of the industrial market. In contrast,SMP systems, which are frequently
used as database servers, gained increasing popularity both in research and industry. For
this reason, more powerful and cheaperSMP systems are likely to become available in the
future. However, singleSMPsystems will not be able to meet the performance requirements
of many large-scale applications. Coupling multipleSMP systems is one way to increase
the number of processors and thus to provide sufficient computing power to handle such
large-scale high-performance problems.

Hoßfeld et al. [40] distinguish betweenparallel computers withSMP nodesandclustered
SMPs. Parallel computers withSMP nodes are tightly coupled over a dedicated network and
present themselves to the user as one uniform computer system. ClusteredSMPs are only
loosely coupled, for example, over a local area network. Both types of architecture are
calledcoupledSMP systems. By the nature of their memory-system architecture, coupled
SMP systems are also distributed-memory systems because memory is distributed across
multiple SMP nodes.
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Hence, in contrast to singleSMPs, coupledSMPs introduce an additional level in the
memory-hardware architecture, which now forms a hierarchyof distributed shared memo-
ries. Unfortunately, this memory hierarchy further complicates the performance behavior
and makes parallel programming more difficult. While the expected economic advantages
argue for coupledSMP solutions to high-performance computing, the complex hardware
structure of coupledSMPs creates a strong need for programming tools that provide assis-
tance in writing efficient codes for these platforms.

However, coupledSMPs are interesting for another reason as well. This class of computers
implements a very general architectural concept, which contains other architectures, such
as distributed and shared memory, and, of course, simple sequential architectures, as spe-
cializations. So most of the programming tools that apply tocoupledSMPs can be used for
these subclasses, too.

1.3 Interconnection Networks

The different nodes of a coupledSMP system communicate over an interconnection net-
work. The network performance has a major influence on the overall performance of the
system. There are a variety of network topologies that differ in node degree, network
diameter, and bisection width.

The nodes of clusteredSMPs are often connected with alocal-area network(LAN ) or a
wide-area network(WAN). In this context,LAN technologies, such as Ethernet,FDDI,
ATM , andHiPPI, which are described in more detail in [71], come into operation.

In principle, LAN technologies can also be used to equip parallel computers with SMP

nodes, but in most cases these computers usesystem-area networks(SANs), which have
been developed specifically to provide better bandwidth andlatency by circumventing
operating-system protocol stacks. Examples of general-purposeSANs frequently found
in thePC-cluster area are Myrinet [60] andSCI (Scalable Coherent Interface) [43].

1.4 Programming Models

The choice of programming models for coupledSMPs is influenced by the hierarchical
memory architecture, which provides shared memory inside single nodes and distributed
memory across different nodes. In principle, a shared address space across allSMP nodes
is technically feasible but it usually requires sophisticated hardware or software solutions,
such as reflective memory [44] or TreadMarks [2], respectively.
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For this reason, the primary programming model for coupledSMPs is message passing
because it provides a simple way to communicate across node borders. Inside single nodes,
programs may alternatively use theshared-memorymodel. If both message-passing and
shared-memory programming are used for a coupled-SMPprogram, it is commonly referred
to as ahybridprogramming model.

A distinctive feature of the shared-memory model is that it provides implicit communi-
cation over shared-memory locations, whereas message passing requires communication
to be made explicit using dedicated operations. Common to both is that each processor
executes different control flows, which corresponds to themultiple-instruction stream –
multiple-data stream(MIMD ) model in Flynn’s classification [25]. Often the instructions
come from the same program, in which case the whole computation is asingle-program,
multiple-data(SPMD) computation.

The following subsections give a brief introduction to all three programming models.

1.4.1 Message Passing

Message passing is mainly used on distributed-memory architectures. A message-passing
program runs multiple processes, where each process owns one private address space.
Communication among different processes takes place only by sending and receiving mes-
sages. The messages may be sent either via a network or using shared memory locations
if available. Communication between two processes occurs either two-sidedly, where both
participating processes have to invoke an operation, or one-sidedly, where only one process
has to invoke an operation.

The MPI (Message Passing Interface) communication library [52, 53] defines a de facto
standard for message passing and is available on most parallel computers. The latest ver-
sion,MPI 2.0, supports all traditional message-passing features, such as point-to-point com-
munication and collective communication, advanced features, such as process topologies
and one-sided communication, but also features that go beyond pure message passing, such
as parallelIO.

1.4.2 Shared Memory

A shared-memory program consists of a collection oftasks, which are assigned to asyn-
chronously working threads. To accomplish these tasks, allthreads have access to a shared
address space. Synchronization utilizes specific mechanisms, such as locks and barriers, to
implement coherent control of shared-memory access.

The shared-memory programming model comes in three varieties. UNIX System V sup-
portsshared segments, which provide a mechanism to define shared memory segments and
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map them onto the virtual address space of different processes. Programs based onthreads
first create one master thread and later fork additional threads depending on the work to be
distributed. In this case, all threads share the same address space and the programmer uses
synchronization primitives for sharing memory. The third approach is sequential-program
parallelization. Here, the programmer inserts directivesor pragmas that assist the compiler
in automatically parallelizing computation-intensive code sections.

OpenMP (Open specifications for Multi Processing) [61, 62] is a widespread programming
interface for scientific shared-memory programming. It defines directives, pragmas, and
library calls to control the parallelization of loops and other code sections in Fortran, C,
and C++ programs. Execution of an OpenMP program starts with one master thread, which
creates a team of slave threads as soon as a parallel region has been entered. After leaving
this region, the team terminates and sequential execution resumes. Synchronization is
accomplished either implicitly or explicitly by certain directives, pragmas, or library calls.
OpenMP implementations are usually based on a low-level thread library.

1.4.3 Hybrid Model

CoupledSMP systems can be programmed using a hybrid combination of message-passing
and shared-memory techniques, where shared-memory is usedfor data sharing inside sin-
gle nodes and message passing is used for communication across different nodes. Most
significant in this context is the combination ofMPI and OpenMP. In this case, there is usu-
ally oneMPI process perSMP node, and OpenMP parallelization can occur in each process.
If the application needs to callMPI routines from multiple threads belonging to the same
process, a thread-safeMPI implementation is required.

1.5 Automatic Performance Analysis

The process of investigating the performance behavior of anapplication and finding the
reasons for limited performance is calledperformance analysis. It usually precedes any
modification of the source code that is intended to optimize or tune the program. Both
activities form a cycle that must often be repeated many times until the application delivers
the desired performance.

Performance analysis includes several complicated and time-consuming tasks. The devel-
oper usually compares a hypothesis of performance, which may be based on a performance
model, to objective observations of the run-time behavior.To do so requires instrumenting
and monitoring the application. To draw reasonable conclusions from the collected perfor-
mance data, the data may need several postprocessing steps.Finally, the developer searches
through the data, tries to (dis)prove the hypothesis, and thinks about ways to improve the
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application’s performance behavior. Clearly, performance analysis demands a significant
fraction of the overall time required for development and appropriate programming tools
could both save time and improve the quality of this process.

Although during the last few decades many achievements havebeen made, the current sit-
uation still suffers from the lack of a software infrastructure that supports all these steps
in a satisfactory, automatic manner. Powerful tools, such as VGV [38], provide valuable
assistance in analyzing the performance ofMPI and OpenMP programs by visualizing the
run-time behavior and calculating statistics over the performance data. However, the devel-
oper is still required to filter out relevant parts from a hugeamount of low-level information
and map that information onto the application-program abstractions without tool support.
Furthermore, many approaches, such asOPAL [30], are compiler- or language-dependent
and, thus, restricted in their portability.

Automating the process of analyzing the performance means automatically delivering the
information that is necessary to understand the reasons forinefficient program behavior.
Thus, it aims at both reducing the amount of work that is left to the software developer and
providing information that cannot be derived manually. In particular, the identification of
performance problems, their classification by kind and severity, and their localization in
the source code should be addressed.

1.6 Contribution of this Thesis

The kind of performance data available has a great influence on the expressiveness of the
performance problems that can be detected. Summary information, as collected by profil-
ing tools, is sufficient to detect a multitude of frequently occurring performance problems.
However, there are performance problems that are not visible in this kind of information.
In contrast, event traces allow the reconstruction of the dynamic behavior in terms of single
events and provide a more detailed view.

This thesis presents a novel approach to analyzing the performance of parallel applica-
tions based on event traces. Its strength lies in its abilityto allow a deeper but more
intuitive insight into performance behavior than is provided by traditional tools. This is
achieved through an automatic transformation of fine-grained but low-level performance
data, whose analysis is time-consuming and may require a high learning effort when based
on such tools, into a more abstract and more expressive view accessible through a simple
but flexible user interface.

The thesis describes the automatic transformation of eventtraces into a three-dimensional
property-oriented performance space (Figure 1.1). The approach covers event traces that
are generated fromMPI, OpenMP, or hybrid applications. Hence, it is especially well
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suited for parallel computers withSMP nodes. The performance space presents the perfor-
mance behavior along three dimensions: performance property, node within the dynamic
call graph, and location on the machine, such asSMP node or process.

Performance
Property

Call Path

Location

Automatic
Transformation

Event Trace

Figure 1.1: Transformation of event traces into a property-oriented performance space.

The performance-property dimension describes the kind of performance behavior. The
call-graph dimension describes both the source-code location and the execution phase dur-
ing which a performance behavior (i.e., property) occurs. Finally, the location dimension
gives information on the distribution of performance across different processes or threads.
Each dimension is arranged in a hierarchy, which allows the representation of performance
behavior on different levels of granularity and pays attention to the hierarchical hardware
and software structure of coupledSMPs. Each point in the representation is mapped onto
the corresponding fraction of program execution time, allowing the convenient correlation
of different behavior along multiple dimensions using onlya single integrated view.

The performance properties to be analyzed mostly refer to common situations resulting
from a suboptimal usage of the underlying programming model, such as a process waiting
for a message from another process. Specification of performance properties is done in
terms ofcompound eventscomposed of simple events as recorded in the trace file. A layer
of abstraction based on the grouping of related events makesthe specifications simple and
easy to extend. The resulting specifications serve as input for an automatic analysis process
that is responsible for detecting the corresponding compound events in event traces.

Characterization of performance behavior is based on complex event patterns in conjunc-
tion with their location in a multi-dimensional structure.This provides both a technique of
abstracting from low-level events to meaningful performance situations and a precise way
of associating such situations with a place in the source code, an execution phase, and a
control-flow point. Since the approach mainly refers to the programming model instead of
specific hardware elements, it also provides a high degree ofportability.

To accomplish this, the thesis defines a framework for formally specifying compound
events that characterize performance behavior on a very high level of abstraction. By
looking for such compound events in an event trace, it is possible to prove that particular
performance problems are present in an application.
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The framework identifies two categories of abstractions whose instances provide a basis
for easily specifying compound events. The abstractions represent entities of the different
programming models, such asMPI collective operations or OpenMP parallel constructs,
and are useful for measuring their influence on performance behavior. The resulting spec-
ifications can be easily transformed into an appropriate detection algorithm. Examples are
shown of how the approach applies toMPI, OpenMP, and the hybrid combination of both -
the most relevant programming models for coupledSMPs.

The implementation of the automatic performance toolEXPERT for MPI, OpenMP, and hy-
brid applications proves the feasibility of this approach.The comprehensive behavioral
classification incorporated inEXPERT explains a multitude of problems in terms of previ-
ously specified compound events. Extensibility mechanismsopen the classification up to
adding new behavior classes, if the predefined ones are not sufficient. EXPERTalso offers a
display technique based on multiple tree browsers, allowing the user to conveniently nav-
igate through the performance space. Colors assist in identifying performance problems
and bottlenecks, and help in investigating them on the most appropriate level of detail. The
trees are interconnected so that the user can view one dimension with respect to a selection
in another dimension.

Most of the ideas contributed by this thesis apply to coupledSMPs in general. Unfortu-
nately, event tracing is rarely applicable to clusteredSMPs because it requires a level of
clock synchronization that cannot usually be provided by this class of computing environ-
ments. For this reason, parallel computers withSMP nodes are the primary target of the
approach taken in this thesis.

1.7 Document Organization

The thesis is structured in two parts. The first part is more theoretical and concentrates on
the notion of compound events as a means to describe situations of inefficient behavior.
The second part is more practical and deals with the design ofa real tool based on the
compound-event method.

Chapter 2 provides an overview of the performance analysis of parallel applications. After
discussing the drawbacks of traditional methods, an introduction to the problem of au-
tomating this task is given. Chapter 3 describes the method of using compound events to
automatically detect inefficient behavior in event traces and how the method is applied to
MPI, OpenMP, and hybrid applications. The design of an automatic performance-tool pro-
totype based on the compound-event method is presented in Chapter 4. Here, issues such
as event-trace generation, abstraction mechanisms, visualization of performance behavior,
and extension mechanisms are discussed. Particular emphasis is put on the representation
of performance behavior in a multidimensional data structure. To demonstrate that the per-
formance problems addressed here are of practical relevance and that they can be easily
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located using the present approach, the prototype is applied to four real-world test cases in
Chapter 5. To draw a larger picture of research in the field andto distinguish the approach
presented here from others, Chapter 6 contains a survey of related work. Finally, Chapter
7 summarizes the thesis research and comments on future workin automatic performance
analysis.
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Chapter 2

Automatic Performance Analysis

This chapter gives an introduction to the performance analysis of parallel applications and
to the problem of automating this task. Reasons for the existence of complex performance
behavior in parallel systems are reviewed. The performanceindices and bounds used to
quantify performance behavior are defined. A general model of the performance analysis
process is then presented along with a survey of different kinds of performance data used
in this process. Finally, the concept of a property-oriented performance space is introduced
as the foundation of an automated analysis process that can overcome some of the current
limitations in performance-analysis methods.

2.1 Complexity in Parallel Systems

The complexity in current parallel systems is a result of theinterfaces and interactions
between different functional layers:

• Application

• Parallel programming interface

• Operating system

• Hardware

The hardware of today’s modern parallel architectures combines sophisticated processor
architectures together with multi-layered memory hierarchies and advanced network tech-
nologies. The operating system makes the hardware resources accessible to applications
through mechanisms, such as process management, memory management, andIO. The
parallel programming interface defines the way parallelismis presented to the programmer

11
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and how parallelism is enabled in the system. It comprises compilers, run-time systems,
and parallel libraries including those that encapsulate complicated communication mech-
anisms among the different processors. Finally, the application itself maps structures of
the application domain to constructs of the programming language and the parallel pro-
gramming interface. For this reason, it may need intricate data distribution strategies and
associated communication patterns. Often, the understanding of these mutual relations
may be further complicated as a result of compiler optimizations that create a distorted
picture of the application’s source code.

In addition to the complexity within single layers of a parallel system, there is a complexity
in the interactions among different layers. For example, anaction in one layer may trigger
an action in a lower layer or may be a reaction on behalf of an event occurring in a lower
layer. For this reason, there are long and interrelated sequences of actions and their (side)
effects in parallel systems.

The complexity of single layers as well as the causal connections between different layers
of parallel systems are the reason for complex performance behavior and the limited ability
of application developers to understand inefficiency in their programs.

2.2 Performance Indices and Bounds

Assessment of a system’s performance requires an appropriate measure for drawing a com-
parison among different systems. Malony [51] identifies three quantitative performance in-
dices for evaluating computer systems:productivity(i.e. throughput),responsiveness(i.e.,
turnaround or response time), andutilization. In the context of analyzing a parallel applica-
tion’s performance, responsiveness is the index of choice.Whenever an application’s per-
formance is classified as good, it has a satisfactory response time. For the non-interactive
applications considered here response time is equivalent to execution time.

Speedupexpresses the performance of a parallel application in terms of the time necessary
for its sequential execution. The speedup for a given numberof processorsn is defined as
the quotient of sequential and parallel execution time:

speedup(n) :=
Tsequential

Tparallel(n)

In general, the speedup can never grow more than linearly andexceed theideal speedupof
n unless there are side effects of parallel execution. For example, modern parallel architec-
tures with cache-based memory hierarchies can achieve superlinear speedup as a result of
memory allocation effects. The parallelefficiencyprovides a measure of the actual degree
of speedup in relation to the ideal speedup:

efficiency(n) :=
speedup(n)

n
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Amdahl [1, 41] formulates an upper limit ofspeedupbased on the sequential part of a
program, that is, the fraction of workloadα that cannot be divided and distributed across
multiple processors:

speedup(n) =
n

1 + (n − 1)α

This is known asAmdahl’s law. It implies that the best speedup that can be expected is
upper bounded byα. Amdahl’s law is a fundamental relationship in parallel-performance
analysis because it points to the central issue ofscalability, which characterizes the depen-
dence of performance on the number of processors and the degree of problem parallelism.
One metric that has been proposed to quantify scalability asthe size of the problem changes
is scaled speedup[34].

Paying attention to hardware utilization is sometimes moreappropriate to highlight per-
formance losses. Riley and Gurd [67] derive their notion of performance bounds from the
hardware’s peak performance as the upper limit. In their view performance of an appli-
cation can be judged “in terms of the resource utilization itachieves ... while performing
useful computation (that which is strictly necessary to solve the application problem at
hand).” Note that the restriction to useful computation ties hardware utilization to the
speedup criterion.

2.3 Performance Analysis Process

Once a parallel application is free of computational errors, its code usually needs to be
optimized. This requires knowledge of which parts of the program are responsible for what
kind of inefficient behavior. Performance analysis is the process of identifying those parts,
exploring the reasons for their unsatisfactory performance, and quantifying their influence
on the overall performance. The information gained throughthis process should suggest
measures that could be taken to tune the application.

Performance analysis and tuning form a cycle that frequently has to be repeated many
times until the performance reaches a satisfactory level. After that, the application is ready
to run in production mode. Pancake [63] presents a conceptual framework that describes
this cycle from the application developer’s perspective inthe form of five questions that
must be answered to accomplish performance improvement:

1. Identification: Is there a performance problem? What are the symptoms?

2. Localization: At what point in execution is performance going wrong? Whatis
causing the problem to occur?

3. Repair: What about the application must be changed to fix the problem? [Perform
the repair.]
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4. Verification: Did the “fix” improve the performance? [If not, optionally undo the
repair, then go back to (2).]

5. Validation: Is there still a performance problem? [If so, return to (1).]

Note that the question of when the tuning cycle should end is nontrivial. How is the applica-
tion developer able to determine whether the performance issatisfactory? Should the cycle
continue until the performance comes close to theoretical bounds, such as ideal speedup or
optimal hardware utilization? In practice, the cycle ends when the application developer
either runs out of time or out of ideas. Sometimes, tradeoffsbetween different execution
parameters impose further constraints on the decision about satisfactory performance.

Malony [51] emphasizes the importance of the scientific method of “systematic testing
of hypotheses through controlled measurement of observable phenomena, analysis of col-
lected data, and modeling of empirical results” to the process of performance analysis and
describes it in the context of experimental computer science. He delineates an idealized
model of a parallel-performance–evaluation environment (Figure 2.1), which highlights the
process of successive refinement of a hypothesis about performance behavior based on ob-
servation and accumulation of knowledge. This model is usedhere as a foundation for the
following discussion of the performance analysis process,which corresponds to question
1 and 2 above.

Performance analysis starts with an initialperformance hypothesis(e.g., too much time
used for communication) based on system and program characteristics, which may include
the results of any kind of static analysis. The hypothesis may be further supported by
performance prediction based on runs under a different configuration, simulation, or a per-
formance model of the application. Performance models playan important role especially
in scalability analysis.

In response to the hypothesis, the experimental performance observation (e.g., monitoring
communication) follows. The observation is constrained bycertain observational capabil-
ities and is usually performed with the support of programming tools. Since the run-time
behavior of an application may be influenced by several different parameters, such as the
number of allocatedCPUs or the selected input-data set, the hypothesis also may refer to
the performance as a function of one or more of these parameters. In this case, the obser-
vation may include a whole series of experiments. In addition, it may be feedback driven,
that is, the performance data are analyzed online and influence the way the experiment is
conducted.

The resultingempirical performance dataare now subject to postprocessing, which may
include matching them with a performance model and making them accessible through
presentation. In this way, the data can be used to refine (or disprove) the initial hypothesis
or contribute to thestored performance knowledgeto be used in later hypotheses. Of
course, hypothesis refinement includes both a more specialized identification (question
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Figure 2.1: Idealized performance-analysis environment from [51].

1) and a more specialized localization (question 2). Depending on the results, the cycle
of hypothesis creation and observation may begin again. Theprocess ends when further
hypothesis refinement becomes impossible due to a lack of newperformance data.

2.4 Performance Data

Performance data associate program entities with performance-related behavioral charac-
teristics. Program entities are either static or dynamic. For example, source-code regions
are static entities, whereas instances of those regions or paths within the dynamic call graph
are dynamic entities. The characteristics are either qualitative or quantitative. Qualitative
characterization refers to the occurrence or the order of certain events, whereas quantitative
characterization is usually achieved by relating the number of certain event occurrences to
intervals of program execution that represent certain program entities.

Performance data may differ in the level of abstraction theyprovide both with respect
to the behavioral characteristics and with respect to the program entities they refer to.
Characterization may occur, for example, either in terms ofsimple events, such as clock
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cycles, or in terms of more complex behavior, such as lock competition. Program entities
may represent either simple pieces of source code or entities of the application domain.
Observational performance data are usually generated on a low abstraction level and in a
later step may be mapped to a higher abstraction level. Unmapped performance data are
calledraw performance data. The most common types of raw observational performance
data areprofilesandevent traces.

Each type of performance data provides a certain view of the performance behavior. Usu-
ally the behavior is described along several dimensions, such as time and location. For this
reason, the view defined by a certain type of performance datawill be called aperformance
space.

2.4.1 Profiles

Profiles map accumulated performance metrics (e.g., numberof clock cycles, number of
function calls, or number of cache misses) onto program entities. For example, a profile
may contain the fraction of execution time spent in different functions of the program.
Typical methods for profile generation aresamplingandinstrumentation.

Sampling is a statistical approach of periodically observing the program execution under
the control of an interval timer and deriving performance metrics for program parts based
on these observations. For instance, theGNU profiler gprof [24] determines the time frac-
tion spent in different functions of the program based on sampling. Besides plain execution
times, gprof estimates the execution time of a function whencalled from a distinct caller
only. However, since the estimation is based on the number ofcalls from this caller, it can
introduce significant inaccuracies in cases where the execution time is highly dependent on
the call site.

In contrast to sampling, instrumentation inserts code directly into the program so that the
program itself is able to trigger actions upon occurrences of certain program-level events
(e.g., function calls). For instance, theTAU performance-measurement framework [69,
70] provides the ability to create execution-time and hardware-counter profiles based on
routine-, basic-block-, and statement-level instrumentation.

Profiles are useful to generate a rough overview of an application’s performance character-
istics while introducing only limited perturbation of run-time behavior and requiring only
moderate storage.

2.4.2 Event Traces

Event traces are collections of individual run-time eventsrecorded during program execu-
tion. The information recorded for an event includes at least a time stamp, the location
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(e.g., the process or node) where the event happened, and theevent type. Depending on the
type, additional information may be supplied, such as the function name for function-call
events. Message-event records typically contain details about the current message (e.g.,
the source or destination location and the message tag). In order to keep instrumentation
simple, the information included in such an event record is usually restricted to the data
available at the location where and at the moment when the event occurs.

Events are recorded at the point of their occurrence. For this reason, an application needs
instrumentation to intercept and store away the desired events; that is, additional code needs
to be inserted at program locations where their occurrence can be detected. To keep intru-
sion low, the event records are initially written into a memory buffer. Upon buffer overflow
or program termination, the events are written to a file. Event traces generated indepen-
dently for each location must be merged and sorted accordingto their time stamps. Systems
that rely only on local clocks have to adjust the time stamps with respect to chronological
displacements and clock drifts.

Limitations of event tracing may result from both the huge amount of data being produced
and the perturbation of the program execution. This is true in particular when the density
of recorded events is high. Because it is difficult to predictwhen this will occur, instrumen-
tation has to be carried out very carefully and should be selective; that is, it should record
only a small subset of all possible events.

The advantages of event traces result from the spatial and temporal relationships among
individual events. This allows the reconstruction of an application’s run-time behavior and
thus can provide more detailed evidence of performance problems. In particular, the ability
to visualize program execution using event-trace browsershave made tracing a widely
accepted technique especially for message-passing programs.

For instance,VAMPIR [3] (Figure 2.2) provides a flexible display for event tracesof
message-passing programs. TheVAMPIR event model defines event types for entering and
leaving a region, for sending and receiving a message, and for executing a collective com-
munication operation.VGV [38], the next-generation ofVAMPIR, is based on an extended
VAMPIR event model that supports hybrid applications as well.

2.5 Instrumentation

Instrumentation is the process of inserting extra code intoa program to observe its ex-
ecution or performance. Often instrumentation is used to make measurements for these
purposes. Shende [69] distinguishes three dimensions of classifying instrumentation and
measurement:

1. How are performance measurements defined and instrumentation alternatives cho-
sen?
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Figure 2.2: Event-trace visualization usingVAMPIR.

2. Whenis performance instrumentation added and/or enabled (precompile time, com-
pile time, link time, run time)?

3. Wherein the program performance measurements are made (granularity and loca-
tion)?

The first question addresses the selection of phenomena to beobserved. It includes, for
example, the choice among different metrics (e.g., time or cache misses).

The second question deals with the maintenance of the user’slevel of abstraction. Run-
ning a program requires moving it through several transformation steps: preprocessing,
compilation, linkage, and execution or interpretation. Each transformation corresponds to
a different level of representing a program’s contents: source code, object code or library,
executable or byte code, and run-time image. Although each level offers the opportu-
nity to add instrumentation to the program, each level provides different information to
be measured. In particular, the user’s abstractions may be represented differently on each
level. For example, the source code allows access to language-specific abstractions, which
may be hidden in the binary representation. However, binaryinstrumentation of the run-
time image allows instrumentation to be carried out at run time (sometimes referred to as
dynamic instrumentation) and thus to be controlled by feed-back, which provides an ex-
cellent way of reducing intrusion. Note that both approaches may impose restrictions on
the portability either across different languages or across different machines.

Programs exhibit a hierarchical structure consisting of different, often nested, elements,
such as modules, functions, and statements. The third question classifies instrumentation
according to the level within the program at which the instrumentation takes place, such
as function entry and exit, statement, or instruction. The decision on the best places for
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adding instrumentation is governed by the tradeoff betweenthe demand for expressive
performance data and the desire to avoid program perturbation.

As an example, theOPARI [57, 58] source-to-source translator instruments OpenMP con-
structs on the source-code level to capture performance-relevant events, such as entering
a parallel region. Since OpenMP defines only the semantics of directives, not their imple-
mentation, there is no equally portable way of capturing those events on a different level.
However, becauseOPARI supports all languages for which OpenMP is defined, it is still in-
dependent of a specific programming language. As a performance interface,OPARI defines
only the types of events to be observed, the selection of information to be measured upon
their occurrence is left to the user.

In contrast, Dyninst [11] is a C++ class library for instrumenting the run-time image of
multiple processes running on the same machine. It allows the insertion of code snippets,
including calls to dynamically loaded modules, at functionentries and exits as well as
before and after function calls. Because Dyninst requires neither recompiling nor restarting
the application, it is well suited for feedback-driven online instrumentation.DPCL [16]
is a dynamic instrumentation system based on Dyninst that isintegrated with a parallel
environment to provide simplified instrumentation of parallel applications.

The TAU [69, 70] performance-measurement framework overcomes therestrictions im-
posed by single-level instrumentation by allowing instrumentation at multiple levels. An
instrumentationAPI allows the manual insertion of instrumented annotations inthe source
code. TAU also provides automatic preprocessor-level instrumentation by replacing calls
to library routines with instrumented ones. In addition,TAU is able to automatically instru-
ment the source code of C, C++, and Fortran programs using a preprocessor based on the
PDT [50] toolkit. Besides compiler-level instrumentation based on a specific optimizing
compiler,TAU supports the interception ofMPI-specific events, such as message dispatch
and receipt, using an interposition wrapper, which is linked between the application and the
original MPI library. Finally, instrumentation using Dyninst allows the insertion of extra
code at run time.

2.6 Performance Properties

Parallel applications may exhibit a large variety of different performance behaviors. For
this reason, a general approach to performance analysis requires a terminology that can be
used to refer to performance behavior independent of its specific characteristics.

Fahringer et al. [21] propose the notion ofperformance properties(e.g., load imbalance,
communication, cache misses, redundant computations, etc.), which characterize a specific
performance behavior of a program and can be checked by a set of conditions. Conditions
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are associated with aconfidencevalue (between 0 and 1) indicating the reliability in prov-
ing the existence of a performance property. In addition, for every performance property a
severitymeasure is provided, whose magnitude specifies the importance of the property in
relation to other properties. Note that a performance property does not necessarily denote
negative, that is, inefficient behavior.

Fahringer et al. further define aperformance problemas a performance property whose
severity exceeds a user- or tool-defined threshold. The uniqueperformance bottleneckis
defined as the most severe performance property. If the bottleneck is not a performance
problem, then the program’s performance is considered to beacceptable and does not re-
quire any further tuning.

On the one hand, the concept of severity helps to distinguishbetween important and neg-
ligible performance problems during the performance tuning process. The purpose of the
severity is to map arbitrarily complex behavior onto a general but simple metric, which
provides the ability to draw comparisons with respect to thepresence of very different per-
formance properties in an application. For this reason, thenotion of performance properties
is a useful key concept for performance-analysis frameworks.

On the other hand, severity offers only a simplified view of the performance behavior. The
severity arranges all performance properties in a linear order with the most severe (i.e.,
the bottleneck) on top. However, it does not take into account the various relationships,
such as specialization and generalization, that may exist among different properties. If
performance analysis were to pursue the goal of identifyingthe most worthwhile candidate
property for optimization, it might be insufficient to sort performance properties only by
one criterion while ignoring inter-property relationships.

For example, suppose a program has two and only two similar properties (e.g., overhead
and synchronization overhead), of which one is more general(i.e., overhead) than the other
one (i.e., synchronization overhead). Suppose also the general property’s severity is higher,
that is, it is the bottleneck. Note that the latter assumption is natural because the more
general property includes the other one’s behavior as a subset. Although the more gen-
eral property has a higher severity because the total overhead is bigger than the overhead
caused only by synchronization, in view of the inclusion relationship, the more specific
property might be more interesting because it reveals more about its causes. Therefore, an
application developer might pay more attention to this lessgeneral property, in particular,
if synchronization overhead represents a major fraction ofthe total overhead.

Another criticism targets the definition of performance problems in terms of a threshold
because the application or tool developer does not necessarily have an idea of a precise and
useful threshold. Sometimes the developer just wants to spend a certain amount of time on
optimization and tries to make the best achievements possible in that time. This might be
another reason to look for more specific performance properties because their causes are
more obvious compared to more general ones.
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Finally, as already anticipated by Fahringer et al., the performance behavior is actually
multi-dimensional. Fahringer and et al. express this in their parameterization of perfor-
mance properties, which allows the consideration of a property with respect to only a spe-
cific source-code region or function call. Regarding these parameters as further dimensions
leads to a very general representation of performance behavior.

A property-oriented performance spaceis defined as a multi-dimensional space with the
performance property as its first dimension. The other dimensions represent static or dy-
namic entities related to an aspect of program execution a performance property may refer
to. The definition of the remaining dimensions is very general and may include parts of the
source code, dynamic run-time objects, or intervals of the execution time. The performance
behavior in such a space is represented by data indicating the extent (i.e., severity) to which
a certain performance property is present with respect to entities of the other dimensions.
For example, a program may spend five percent of the overall execution time on a property
synchronization overheadin function foo on processzero. Here, propertysynchronization
overhead, function foo, and processzeroare coordinates of a point in a property-oriented
performance space, and the severity of that point is given asfive percent. Similar to map-
ping single points onto a severity, it is possible to map setsof points onto a severity. For
example, instead of considering the synchronization time for function foo, it should be
possible to consider the synchronization time for the wholeprogram. Thus, the severity is
a mapping that maps a subset of the performance space onto a numeric value that makes
it comparable to other subsets. The advantage of a property-oriented performance space is
that it provides the ability to represent performance behavior along multiple dimensions in
a data structure that is independent of the semantics of specific performance properties. In
addition, the mapping of whole subsets instead of single points onto a severity value allows
performance analysis on varying levels of detail.

In this manner,performance problemsandperformance bottleneckscan be considered as
subsets of the performance space that are mapped onto a high severity and a very high
severity, respectively. Of course, they are typically associated with a negative performance
property, that is, one that denotes inefficient behavior.

Note that this characterization of both terms clearly refers not only to a class of behavior but
also to the program entities that behavior is associated with. In the example above, the syn-
chronization time in functionfoo and processzeromight be considered as a performance
problem. In addition, this characterization is very flexible because it allows inter-property
relationships to be taken into account and a problem to be analyzed in the context of a more
general problem.
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2.7 Automatic Performance Analysis

Automating the process of performance analysis requires a model of the expected results
of that process. In general, automation of performance analysis may cover all activities
involved in that process. Riley and Gurd [67] roughly dividethese into two categories:

• Gathering of data

• Search process

They describe the search process based on the notion of performance properties as a “sys-
tematic examination of performance data gathered for an application in order to identify
performance properties in relation to regions of the application source code.” The search
process requires the performance properties to be defined interms of conditions referring
to performance data and includes query formulation and execution. The gathering of the
necessary data requires experiment planning and executionmanagement of instrumented
runs of the program.

Justification for the above distinction can be found in the difference between raw (i.e.,
low-level) performance data and high-level performance data that present the performance
behavior on a higher level of abstraction. The nature of raw performance data is determined
by the nature of common monitoring techniques, which usually gather data in the form of
profiles or event traces. Traditional performance tools support the search process mainly by
providing low-level views of these performance data types.These views typically include
textual or graphical - often interactive - displays, such astables or bar charts of profiling
information, time-line diagrams of event traces, and statistical analyses. The following
tools exemplify common techniques of presenting profiles and event traces to the user.

The Apprentice [14] performance tool visualizes execution-time profiles of message-
passing programs on theCRAY T3E in the form of bar-chart views (Figure 2.3). Apprentice
shows time profiles on the program, routine, and basic-blocklevel. Each bar is divided
into sections by the use of a different color indicating a different type of activity, such as
parallel processing, communication overhead, orIO. Starting from an arbitrary activity bar,
the user can navigate through the call graph in both directions of a calling relationship to
obtain profile information on subroutines as well as call sites.

Xprofiler [42] is graphical front end for theGNU gprof profiler [24] with the ability to
present gprof output as a call-graph diagram (Figure 2.4). Each node is displayed as rect-
angle, whose width and height represent the execution time including and excluding called
routines, respectively. The arcs are labeled with the number of times a node was visited.
In addition to the call-graph view, an annotated source-code view displays profiles for in-
dividual source lines.

VAMPIR [3] visualizes event traces of message-passing programs byshowing a time line
for each process (Figure 2.2) indicating its current execution state by color. Arrows point-
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Figure 2.3: Apprentice profile browser.

ing from one time line to another time line represent point-to-point messages sent between
processes, whereas connected lines covering multiple processes indicate collective commu-
nication. VAMPIR’s zooming capability allows the user to examine the run-time behavior
on an arbitrary level of temporal granularity. In addition to clicking on single items in the
representation to obtain more detailed information, the user can look at statistics for the
interval displayed.

The drawbacks of these low-level views are manifold. First,the user is confronted with
a potentially large amount of data, which has to be searched manually for the presence
of performance properties. This often includes manual comparison of different aspects of
program behavior displayed in different unrelated views. Second, the views provided by
current tools usually present program behavior in terms of low-level metrics that do not
help the user in deciding whether performance improvement is possible, how performance
can be improved, and whether an optimization effort would beworth the investment. Third,
as a result of the multitude of different view options offered by some tools, a lot of training
may be necessary before a tool can provide valuable assistance in performance analysis.

The search process as specified by Riley and Gurd describes a transformation of raw perfor-
mance data into a two-dimensional performance space of performance property by source-
code region. The difference between this performance spaceand low-level views is the
characterization of performance behavior in terms of abstract performance properties that
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Figure 2.4: Xprofiler call-graph diagram.

explain misbehavior on a higher level of abstraction.

However, there is no logical reason to restrict the performance space to only two dimen-
sions. For example, the performance of a function might be poor only when called from
a distinct caller or at a distinct location (e.g., process ornode); or a performance property
may evolve over time as the application moves among different execution phases. There-
fore, it might be reasonable to consider the dynamic call graph or the execution phase
as additional dimensions. In general, the search process can be regarded as the transfor-
mation of raw performance data into a general multi-dimensional high-level performance
space that may be made up of various dimensions depending on the purpose of the anal-
ysis. Note that if raw performance data is thought of as beingrepresented in a low-level
performance space, the search process can be regarded as a transformation from a low-level
space into a high-level space.

This thesis regards the automatic search process as an automatic transformation of low-
level performance data into a multi-dimensional property-oriented performance space. The
benefit of this viewpoint is a more general model of performance behavior that is able to
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take into account the state of the program at the time a specific performance property is
present. This may provide a better understanding of the preconditions that lead to a certain
kind of behavior.
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Chapter 3

Specification of Performance Behavior

This chapter presents a novel approach to analyzing performance properties of parallel ap-
plications based on event traces. It defines a framework for formally specifying compound
events that characterize performance-relevant behavior.The framework allows the creation
of abstract building blocks that represent concepts of the underlying programming model
and therefore provide an easy means to specify complex compound events representing
inefficient behavior. Using these specifications, it is possible to automatically locate ineffi-
ciencies in parallel applications by looking for occurrences of the corresponding compound
events in event traces. This will be demonstrated forMPI, OpenMP, and their combination.
Finally, to show that the approach is also suitable for existing performance-analysis frame-
works, extensions are proposed to integrate it intoASL (APART Specification Language), a
language for the formal specification of general performance properties.

3.1 Rationale

Effective automatic performance analysis requires formalmethods for specifying perfor-
mance properties that characterize a specific performance behavior. The strength of spec-
ifying inefficient behavior in terms of compound events stems from its ability to describe
the behavior on a high level of abstraction directly relatedto the programming model.
The resulting specifications can then serve as a basis for performance tools that are able
to prove the presence of complex performance properties in aparallel application without
user intervention.

The kind of performance data available has a great influence on the expressiveness of
the performance properties that can be defined. Summary information, as collected by
profiling tools, is sufficient to describe a multitude of frequently occurring performance
properties. However, there are performance properties that are not visible in this kind

27
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of information. A more detailed view of a parallel application’s behavior can be gained
by using event traces because event traces preserve the spatial and temporal relationships
among individual events, allowing the reconstruction of anapplication’s dynamic behavior.
By looking for compound events in an event trace, it is possible to prove that particular
performance properties are present in an application.

A compound eventrepresenting a performance property is a set of primitive events, which
are called itsconstituents. Compound events that relate to the programming model expose
complex relationships among their constituents reflectingtheir model-relevant actions. For
instance, sending a message and receiving it are interconnected by a relationship derived
from the message-passing programming model. Because programming models differ in
their operational semantics, it is difficult to devise a general formal representation of com-
pound events that is powerful enough to express the complex compound events across all
programming models.

To overcome this problem, the thesis identifies two categories of abstractions that can be
used to provide programming-model–specific building blocks, on top of which a general
specification of compound events is possible. The abstractions represent entities of the dif-
ferent programming models, such asMPI collective operations or OpenMP parallel-region
constructs, and are useful for measuring their influence on performance behavior. The
resulting specifications can be easily transformed into an appropriate detection algorithm.

3.2 System Observation Based on Events

Because a computer changes its state in discrete intervals (i.e., clock cycles), it is possible
to model the dynamic behavior of any program execution as a sequence of atomic actions.
The finest temporal granularity of actions happening in a computer system is a clock cycle.
However, in practice, measuring the time of each action by software requires several clock
cycles. Thus, the temporal resolution of atomic actions that can be observed is much lower.

An event characterizes an atomic action happening at a distinct location and at a distinct
point in time. It is the smallest entity that can constitute the dynamic view of a parallel
application. However, performance analysis is frequentlyinterested in non-atomic activ-
ities (e.g., sending a message), which require a set of events to characterize them. Often
a non-atomic activity is described in terms of its start or end events, which can usually
be associated with a distinct point in time. The location of an event is determined by the
location of the control flow causing the associated change inthe state. The location of an
event may be logical or physical (e.g., a process or aCPU, respectively).

Event tracing regards the execution of a program as a sequence of events representing
actions relevant to the purpose of the observation. Therefore, the selection of event types
to be observed defines the view of program execution an event trace can provide. Anevent
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modeldefines the formal properties of that view. It comprises a setof event types with an
associated set of attributes and constraints defining correct event ordering.

An event type is defined by a set of attributes. In most cases, there are event types that
share a subset of their attributes. For this reason, it is convenient to create a type hierarchy
containing concrete event types derived from abstract event types that isolate commonal-
ities. In the following, concrete event types are written insmall Roman letters, whereas
abstract event types are written in small italics.

Each event traced has a locationloc (e.g., theMPI process) as well as a wall-clock time
stamptime. It is useful to define an abstract event typeEventconstituting the root of the
type hierarchy. All event types are derived fromEvent. The set of locations involved in an
event trace is calledL.

An event typet is defined by a set of attributes{a1, . . . , ant
}. A subset of these attributes

may be associated with more general base types. Subsequently, the notatione.attr is used
to refer to an attributeattr of an evente. Table 3.1 summarizes all event attributes used in
this document, including those that will be introduced in later sections when dealing with
parallel programming models.

Table 3.1: Summary of event attributes.

Attribute Description
cedgeptr least recentEnterevent visiting the preceding call path
cnodeptr least recentEnterevent visiting the same call path
csite call site
enterptr Enterevent of the enclosing region instance
loc location
reg region
time time stamp
MPI

com communicator
dest destination location of a message
len message length
recvd bytes received during a collective operation
root root location of a collective operation
sendptr Sendevent to a givenReceiveevent
sent bytes sent during a collective operation
src source location of a message
tag message tag
OpenMP

lock a lock object used for synchronization
lockptr Syncevent that performed the last change of a lock’s ownership status
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Definition 3.1 (Event Trace). An event traceis a finite indexed set of eventsE :=
{e1, . . . , ene

}. The indexing reflects the time-sequenced order of event records in the trace
file:

1. i < j ⇒ ei.time ≤ ej .time

2. i < j ∧ ei.loc = ej .loc ⇒ ei.time < ej .time

Also, the indexing defines a linear order<:

∀ 1 ≤ i, j,≤ ne : i < j ⇔ ei < ej

�

The conditions require the events to be in chronological order and allow only events at
different locations to happen simultaneously. Depending on the programming model being
used by an application, there may be additional constraintsas well.

In the following, the abbreviationEt denotes those events of an event traceE that are of
typet:

Et := {e ∈ E| type(e) = t}

3.3 Event-Model Enhancement

To be able to express complex relationships among the constituents of a compound event,
the event model of system observation can be extended by creating instances of two differ-
ent categories of abstractions:

• State sequences

• Pointer attributes

The process of creating event abstractions from a given event model is calledevent-model
enhancement. The resulting model is called theenhanced event model. To distinguish the
original model from the enhanced model, the original model is called thebasic event model.
State sequences and pointer attributes are formally definedin the following subsections.
Concrete examples can be found in Sections 3.4, 3.5, and 3.6.

The concepts of state sequences and pointer attributes werepreviously used by the au-
thor to design the initial version of theEARL trace-analysis language [75], which targeted
the analysis of point-to-point communication in message-passing programs. This chap-
ter provides both a generalization and a refinement of these concepts and a much broader
event-analysis coverage, includingMPI collective communication, OpenMP, hybrid pro-
gramming, and call-path analysis.
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3.3.1 State Sequences

Compound events representing performance properties often exhibit some form of locality
within the event trace. That is, the constituents of such a compound event are not arbitrary
subsets of the trace, but share some context. This context isrepresented by the state of
the parallel system at the time when the compound event occurs. In most cases, this state
refers to a set of ongoing activities in contrast to activities that are already finished.

An event happening in a parallel system indicates a change inits state, thus events can be
regarded as state transitions. An event trace can be seen as asequence of state transitions
starting at an initial state and changing into the next state, event by event, until a final
state is reached after the last event. The state entered as the result of an event is a useful
abstraction when specifying compound events that represent inefficient behavior.

The overall state of a parallel system is characterized by different aspects. For example,
one aspect might be the set of messages being transferred at agiven moment, another
aspect might be the dynamic call stack of a process or thread.Such a state aspect can be
conveniently characterized in terms of the events that caused that aspect’s state. Thus, it
becomes possible to describe state information using only events and sets of events. For
example, the set of messages being transferred at a given moment can be represented by
the set of send events of these messages, and the dynamic callstack can be represented by
the set of function-call events.

Model enhancement defines for each of theses aspects astate sequencethat describes the
evolution of that aspect over time. Corresponding elementsof all state sequences (i.e.,
those that correspond to the same event) form a vector, whichis called theoverall state.
The evolution of the overall state over time is described by avector of state sequences,
which is called theoverall state sequence. A state sequence is inductively defined by a
transition operator. The transition operator is applied tothe current overall state and the
next event to compute the next state in the sequence and, thus, a part of the next over-
all state. Note that computing the next state from the preceding overall state allows the
definition of relationships across different state sequences.

Definition 3.2 (State Sequence).A state sequence
�

of an event traceE = {e1, . . . , ene
}

is a finite indexed set of subsets ofE:

�
= {

�
0, . . . ,

�
ne
}

�
0 is called theinitial stateof

�
and is always the empty set.

�
i>0 is called astateof the

eventei and does not contain any events happening later thanei:

�
0 := ∅

�
i ⊆ {e ∈ E| e ≤ ei}, 1 ≤ i ≤ ne
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The vector of allstate sequencesdefined for an enhanced event model is called theoverall
state sequence:

~� = (
�0, . . . ,

�ns)

The vector of all states with indexi is called theoverall statei:

~� i = (
�0

i , . . . ,
�ns

i ), 0 ≤ i ≤ ne

Thus, a state
�j

i describes the aspectj after the occurrence of eventei. The union of all
states with indexi contains all events that are part of the overall state. It is called theflat
overall stateΓi:

Γi :=
⋃

k∈{1,...,ns}

�k
i , 0 ≤ i ≤ ne

A state sequence
�j (i.e., an aspect of the overall state) is inductively definedby a transition

operator�j . A transition operator is applied to an eventei and the previous overall state
~� i−1 to compute the state

�j
i .

�j
0 := ∅

�j
i := �j(ei, ~

�
i−1), 1 ≤ i ≤ ne (3.1)

A transition operator is defined by a set of transition functions�jt , one for each event type
t. If ei in (3.1) is an event of typet, then

�j
i is computed using the transition function for

typet:

�j(ei, ~
�

i−1) := �jt (ei, ~
�

i−1), if type(ei) = t, 1 ≤ i ≤ ne (3.2)

If there is no explicitly defined transition function for an event typet, �j
t is assumed to

leave the state unchanged (i.e., to be the identity function). A transition function defined
for an abstract base event type covers all derived event types. If a transition operator defines
several transition functions defined along a path in the typehierarchy, they are all applied in
the order defined by inheritance starting with the most general type. That is, the transition
function effectively applied is a composition of all the transition functions defined along
the path ranging from the root to the type of the current event. For example, consider two
typesb andd, whered is a descendant ofb. If there are two transition functions�b and�d

andei is an event of typed, then:

~� ′
i−1 := (

�0
i−1, . . . , �jb(ei, ~

�
i−1), . . . ,

�ns

i−1)�j
i := �jd(ei, ~

� ′
i−1)

A transition function�jt may add or remove events from a state. An event added to
�j

i−1

must be an element of the (flat) overall stateΓi−1 or it must beei itself. It follows that the
range of

�j
i is limited in the following way:

�j
i ⊆ Γi−1 ∪ {ei}, 1 ≤ i ≤ ne (3.3)

�
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State sequences are abstractions used to provide context information for the constituents of
a compound event. They separate activities that are still going on with respect to a certain
point in time from activities that are already completed with respect to that point in time.
As will be shown later, state sequences are especially useful to represent abstractions of
the different programming models.

The flat overall stateΓi of a given eventei contains all the events that are related to activities
that are still going on. As will be explained later, the flat overall state plays an important
role when implementing an enhanced model.

3.3.2 Pointer Attributes

Another useful abstraction is a link connecting related events, so that one can navigate
from one event to another related event. An example is a link from the event of receiving a
message back to the corresponding event of sending it. This mechanism permits navigation
along a path of related events and the definition of relationships among the constituents
of a compound event using such paths. A natural way of representing such links is to
provide event attributes with pointer semantics. Pointer attributes are the second category
of abstractions considered here. They are added to the attributes{a1, . . . , ant

} already
defined in the basic model for an event typet.

Definition 3.3 (Pointer Attribute). A pointer attributeptr is a mapping that maps an
event of a particular typet from an event traceE onto a non-future event fromE:

ptr : Et → E ∪ {null}

ei 7→ ei.ptr

The pointer attributeptr of an eventei is defined as a function of the attributesa1, . . . , ant

defined in the basic model fort and the preceding overall state~� i−1. Its range is limited to
ei and the previous flat overall stateΓi−1:

ei.ptr := fptr(ei.a1, . . . , ei.ant
, ~
�

i−1) (3.4)

ei.ptr ∈ Γi−1 ∪ {ei, null}

�

To indicate the absence of a meaningful event, a pointer attribute may carry thenull value
in certain situations. Pointer attributes depend on the attributes defined in the basic model
and on the overall state immediately before the event under consideration. Also, similar to
state sequences, the range of pointer attributes is limitedto ei and the previous flat overall
stateΓi−1 if they are notnull. From this it follows that pointer attributes never point to
future events. Note that the functionfptr may refer to pointer attributes of previous events
includingptr itself.
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Note that it is possible to use pointer attributes in state-sequence definitions in the same
way that state sequences are used in pointer-attribute definitions, that is, using a pointer
attributeei.ptr to define a state

�
i. Sinceei.ptr may be defined only using the overall state

~� i−1 and, in addition,∀0 ≤ j ≤ ns :
�j

0 = ∅, it is ensured that
�

i is still well defined.

3.3.3 Implementation of an Enhanced Model

The calculation of both state sequences and pointer attributes occurs inductively. That
is, starting from~�0 = (∅, . . . , ∅), an implementation of a model computes the pointer
attributes ofe1. After that, it calculates~

�
1, and, in a next step, the pointer attributes

associated withe2 and so forth.

To simplify an implementation, the model-enhancement framework requires that it is possi-
ble to compute both the overall state and pointer attributesof an eventei without accessing
any events other thanei itself and those contained in the flat overall state preceding ei, that
is without accessing any events other thanΓi−1 ∪ {ei}.

Definition 3.4 (Working Set). Theworking set∆i of an eventei is the union of the pre-
ceding flat overall state and the event itself:

∆i := Γi−1 ∪ {ei}

�

The name “working set” is used to refer to locality. That is, in each step an implementa-
tion only needs to remember a small subset∆i ⊆ E, since all functions involved in these
calculations refer at most to the current event and the overall state immediately prior to
that event. This is a very important property of the framework because it allows a tool to
sequentially traverse the trace file from the beginning to the end, and to compute all the
abstractions (i.e., state sequences and pointer attributes) solely based on a subset of events
to which not more than one event can be added at every step. This helps to avoid expensive
file accesses that would otherwise become necessary if the whole file was needed for every
computation. Although this requirement limits the abilityto define fully general abstrac-
tions, it is not a hard restriction because it excludes only events belonging to activities that
have already been completed and therefore are usually not related to an event’s context.

The working-set requirement has already been anticipated by the definition templates for
state-transition functions (3.1 - 3.2) and pointer attributes (3.4) because both templates
refer only to structures containing elements of the workingset. Note that, when calculating
abstractions for an event, pointer-attribute values can becompared and copied without
accessing the events they point to because pointer attributes only need to carry references
to these events instead of the events themselves. Using the event index as a reference even
allows a comparison with respect to the relative position within the trace file.
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The concept of model enhancement is not only a convenient method for defining compound
events. Since the locality exhibited by compound events is exploited through restricting the
potential event accesses to the working set when calculating abstractions, it also provides
a foundation for efficient search methods to detect compound-event instances in an event
trace.

Sections 3.4 and 3.5 exemplify the concept of model enhancement by applying it toMPI

and OpenMP. In both cases, a basic event model is developed and then enhanced by adding
instances of the two categories of abstractions. Finally, the two models are merged into
one single model to describe hybrid applications in Section3.6 .

3.4 Model Enhancement: MPI

The MPI message-passing communication library specifies communication operations to
be explicitly invoked by an application to exchange messages among processes. The li-
brary provides operations for point-to-point and operations for collective communication
involving more than two processes.

The current event model, which is covered in this section, does not yet address the advanced
features which are included in the latest version ofMPI, MPI 2 [53]. To give an overview, a
brief discussion of these features follows in Section 3.4.3.

3.4.1 Basic Event Model

The execution of anMPI application involves a set of locations at which events may happen.
To keep the model simple, the location of an event occurring during execution of anMPI

application is defined as the triggeringMPI process, which can be described using the rank
in MPI COMM WORLD. Thus, the location is a number fromL := P = {0, . . . , np − 1},
wherenp is the total number of processes.

The static view of anMPI application comprises a set of regions. A region is a code section
of a parallel program. It may be a function, a loop, or just a basic block. One execution of
a region forms a region instance. It is assumed that a region instance may be exited only
after all enclosed region instances have been exited, that is, the entries and exits of region
instances occurring at the same location form a correct parenthesis expression.

The event typesEnterandExit indicate that a code region has been entered or exited, respec-
tively. They both are derived from the same abstract base type RegionEventthat provides a
region attributereg which denotes the region entered or left. In addition,Enterevents carry
an attributecsite, which gives information on the source-code location (i.e., the call site)
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from which the new region is entered. Note that transitions between regions, such as enter-
ing a loop, do not necessarily involve function calls. In this case, the call site is just the last
location of the source region that has been executed before entering the destination region.
Note that providing call-site information requires instrumentation of call sites.

Since sending and receiving point-to-point messages are activities that can be easily sepa-
rated from their triggering functions, the event typesSendandReceiverepresent the message
dispatch and the message receipt, respectively.Sendprovides an attributedest for the mes-
sage’s destination location, andReceiveprovides an attributesrc for the message’s source
location. Of course, sending and receiving a message are non-atomic activities that may
take a while. For this reason, aSendevent denotes only the start of sending a message,
whereas aReceiveevent denotes the end of receiving a message. This ensures that aSend

event never occurs after the correspondingReceiveevent. Note that the duration that can be
derived from both events of a message is the most pessimisticestimation.

The message properties themselves are accommodated in an abstract base event type
MsgEvent, which has attributes containing the message tagtag, the communicatorcom,
and the message lengthlen. Usually, events of these types are placed in between theEnter

andExit events of the correspondingMPI routine. As already mentioned, message events
are constrained in their order within the event trace such that aSendnever occurs after its
matchingReceive.

Modeling MPI collective operations is more involved because here two different aspects
are linked very closely. First, a collective operation is executed in parallel on different
locations. That is to say, a collective-operation instanceis actually a set of single region in-
stances. Second, a collective operation involves communication, but the detailed structure
of this communication is usually hidden behind theMPI implementation.1 This makes it
difficult to explicitly model the communication events occurring. Therefore, a hybrid event
typeMPICExit denotes the exit of a collective operation. It is derived from Exit and also pro-
vides attributes characterizing the collective communication. These attributes include the
number of bytes sentsent from the event’s location and the number of bytes and received
recvd by the event’s location, the root location of the collectiveoperationroot, if there is
any, and the communicatorcom. The communicator can be considered as a link connect-
ing the single region instances that constitute a whole collective-operation instance. This is
because it determines the set of locations involved in that operation instance. So for each
participating location (i.e., each location in the communicator’s group of processes), the
call of anMPI collective operation results in anEnterevent for calling it and in anMPICExit

event for leaving it.

The complete type hierarchy is depicted in Figure 3.1 usingUML [10] notation. For conve-
nience, full attribute names are used in the figure. Note thatin order to keep the hierarchy

1Pure barrier synchronization is considered as a special case of anMPI collective operation where the
amount of data transferred is zero.
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tree simple, the hybrid nature ofMPICExit is not expressed explicitly by multiple inheritance
relationships.

Event

location
time

Enter Exit Send Receive

source

RegionEvent

region

MsgEvent

tag
communicator
length

MPICExit

communicator
root
sent
received

destinationcall site

Figure 3.1: Basic event model forMPI applications. Hatched boxes representMPI-specific
event types.

The communicator connects the different events making up a whole collective-operation
instance because it defines the group of locations executingthat instance. C denotes
the set of all communicators created during program execution. The groupGroup(c)
of a communicatorc ∈ C is a subsetGroup(c) ⊆ L of the set of all locations so that
Group(MPI COMM WORLD) is equal toL.

Note that this model can be implemented using very simple instrumentation technology,
such asMPI interposition libraries.

3.4.2 Enhancement

This subsection describes simple abstractions that can be used to specify performance-
relevant compound events occurring inMPI applications. The event type hierarchy moti-
vates the description of the activities performed by anMPI application at a given moment
in terms of three different higher-level concepts:

• Region instances
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• Messages

• Collective-operation instances

First, it is shown that state sequences are a suitable means to describe the set of currently
active region instances and message transfers. After that,it is demonstrated that this is also
true for collective-operation instances. In addition, pointer attributes prove to be a handy
instrument to link the single events constituting (collective) region instances and messages
together. As a prerequisite, three auxiliary functions aredefined.

Definition 3.5. Let F ⊆ E be a subset of the event trace andl ∈ L a location:

mostrcnt(F ) := {e ∈ F | ¬∃f ∈ F : f.time > e.time}

leastrcnt(F ) := {e ∈ F | ¬∃f ∈ F : f.time < e.time}

haveloc(F, l) := {e ∈ F | e.loc = l}

�

The first two functions return those events from a set of events F that happened most or
least recently.haveloc() returns the events that have a specific location. For convenience,
the set of events returned by these functions is allowed to bealso treated as a single event
if the returned set contains exactly one unambiguous element.

State Sequences

The region instances being executed at a certain moment can be easily represented by the
set ofEnterevents that determine their beginnings.

Definition 3.6 (Region Stack).Theregion stack� l of a locationl ∈ L is a state sequence
that collects theEnterevents of active region instances at locationl. Its transition operator
�l is defined by the following transition functions:

�l
Enter : � l

i :=

{
� l

i−1 ∪ {ei} if ei.loc = l

� l
i−1 else

�l
Exit : � l

i :=

{
� l

i−1 \ mostrcnt(� l
i−1) if ei.loc = l

� l
i−1 else

�

The first function�lEnter is responsible for addingEnter events representing active region
instances to the region stack and the second function�l

Exit is responsible for removing
them from the region stack as soon as the corresponding region instances are completed.

The messages currently being transferred are best characterized by the set of their respec-
tive Sendevents.
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Definition 3.7 (Message Queue).Themessage queue� s,d of a pair of locationss, d ∈ L
is a state sequence that collects theSendevents of messages underway froms to d. Its
transition operator� s,d is defined by the following transition functions:

� s,d
Send : � s,d

i :=

{
� s,d

i−1 ∪ {ei} if ei.loc = s ∧ ei.dest = d

� s,d
i−1 else

� s,d
Receive : � s,d

i :=

{
� s,d

i−1 \ {ej} if ei.src = s ∧ ei.loc = d

� s,d
i−1 else

where ej := leastrcnt({e ∈ � s,d
i−1| e.tag = ei.tag ∧ e.com = ei.com})

�

The first function� s,d
Send addsSendevents of messages that have just been sent, and the

second function�s,d
Receive removesSendevents of messages that have just been received. This

means that the set of messages currently being transferred is always up to date. Matching
SendandReceiveevents is done using the standardMPI-messaging semantics (pp. 30-34 of
[52]), which requires theSendevent of a givenReceiveevent to be the least recent event
with matching tag and communicator in the message queue for traffic from the message’s
source location to its destination location (i.e., the location of theReceiveevent).

The events involved in collective operations form another class of related events that are
important in the context ofMPI performance properties. A complete collective-operation
instance is depicted in Figure 3.2. The figure shows the time lines of all locations (i.e.,
processes) that are involved in this instance as well as the time lines of two locations that
are not involved. The involved locations together form the group that is associated with
the communicator of the operation call. This group is a subset of all possible locationsL.
Entering and leaving the correspondingMPI function are represented byEnterandMPICExit

events. An explanation of the arrows pointing from the rightto the left follows later.

time

lo
ca

tio
ns

Enter

MPICExit

enterptr

Figure 3.2: AnMPI collective-operation instance.



40 CHAPTER 3. SPECIFICATION OF PERFORMANCE BEHAVIOR

Capturing the events belonging to a collective-operation instance can be done by defining
an appropriate state sequence for each communicator. The basic idea is to accumulate the
MPICExit events belonging to a collective-operation instance untilall events belonging to
that instance have been collected. After completion the corresponding events can be re-
moved. This idea exploits the fact that the collective-operation instances executed within
the same communicator are never interleaved, that is, collective operations must be exe-
cuted in the same order by all members of the communicator’s group.

Definition 3.8 (Collective-Operation Queue).The collective-operation queue�c of an
MPI communicatorc ∈ C is a state sequence that collects theMPICExit events of active
collective-operation instances of the communicatorc. Its transition operator�c is defined
by the following transition functions:

�cMPICExit : �c
i :=

{
�c

i−1 ∪ {ei} if ei.com = c

�c
i−1 else

�cEvent : �c
i :=

{
�c

i−1 \ Inst if ∀l ∈ Group(c) : |haveloc(�c
i−1, l)| ≥ 1

�c
i−1 else

where Inst :=
⋃

l∈Group(c)

leastrcnt(haveloc(�c
i−1, l))

�

An MPICExit event is added to�c
i−1 by applying the function�cMPICExit if c is the com-

municator of theMPICExit event (ei.com = c). After all MPICExit events belonging to a
collective-operation instance have become elements of�c, they are removed by applying
�cEvent.

Note thatEventis more general thanMPICExit, which has an important effect on the order in
which the two functions are applied.�cEvent is always applied before�cMPICExit. When the
last eventei of a collective-operation instance is reached,�cEvent is applied first. However,
at this moment, the last event has not yet become part of�c

i so that�cEvent is without any
effect. After that,�cMPICExit, is applied andei is added to�c

i . Now, the complete instance is
a subset of�c

i and the condition in�cEvent allowing the removal of this instance is satisfied.
Finally, after proceeding to the next event,�cEvent is applied again and the complete instance
is removed.

To access the events belonging to a collective-operation instance, another auxiliary function
is defined that can be used to isolate these events.
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Definition 3.9 (mpicoll()). Let e ∈ E be an event from the event trace:

mpicoll(e) :=






Inst if type(e) = MPICExit ∧

∀l ∈ Group(e.com) : |haveloc(�e.com
i , l)| ≥ 1

∅ else

where Inst :=
⋃

l∈Group(e.com)

leastrcnt(haveloc(�e.com
i , l))

�

If e is an MPICExit event that completes a collective-operation instance, then mpicoll()
returns allMPICExit events belonging to that instance. Otherwise the empty set is returned.
How to access the correspondingEnter events will be explained later when dealing with
pointer attributes.

Enhancing the model in this way means considering a collective operation essentially as
a set of single region instances. This viewpoint has the advantage that it allows OpenMP

parallel constructs to be treated in a similar way. Thus, it provides a very general idea of a
collective operation.

Pointer Attributes

Both region instances and messages can be represented by pairs of matching events. A
region instance is characterized by itsEnterandExit events, and a message is characterized
by itsSendandReceiveevents. For this reason, it would be reasonable to provide a link con-
necting both sides of each pair; that is to say, a link from theExit event to its corresponding
Enterevent and a link from theReceiveevent to its correspondingSendevent. The direction
of these links follows Definition 3.3, which prohibits linksfrom pointing into the future.
However, the relationship connecting anExit event with its matchingEnterevent is actually
a specialization of a general relationship between an arbitrary event and theEnterevent of
the region instance enclosing it. Therefore, a link should connect an arbitrary event with
theEnterevent of its enclosing region instance; that is, with the event that was “at the top” of
the region stack immediately before the event happened. Thefollowing pointer attributes
are defined using conditions that are similar to those already used for the definition of state
sequences.

Definition 3.10 (enterptr). The enterptr attribute is a pointer attribute for an arbitrary
eventei ∈ E that points to theEnterevent of the region instance in which the eventei took
place:

ei.enterptr :=

{
mostrcnt(� ei.loc

i−1 ) if � ei.loc
i−1 6= ∅

null else

�
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Definition 3.11 (sendptr). Thesendptr attribute is a pointer attribute for aReceiveevent
ei ∈ EReceive that points to its correspondingSendevent:

ei.sendptr := leastrcnt({e ∈ � ei.src,ei.loc
i−1 | e.tag = ei.tag ∧ e.com = ei.com})

�

The correspondingSendevent is the least recent event with matching tag and communica-
tor in the message queue for traffic from the message’s sourcelocation to its destination
location, that is, the location of theReceiveevent.

The meaning of these pointer attributes is illustrated in Figure 3.3. Here, events taking
place at two different locations are shown along their time lines. The upper location per-
forms two nested region instances. During the inner region instance (indicated by the
dark-gray bar) a message is sent to the lower location.

The auxiliary functionmpicoll() (Definition 3.9) delivers allMPICExit events belonging to
the same collective-operation instance. TheEnterevents of that instance can be accessed by
following theenterptrattributes originating from the returned events as depicted in Figure
3.2. Thus, it is easy to access the whole set of events constituting a collective-operation
instance.

time
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Send
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sendptr

enterptr

Figure 3.3: References provided by pointer attributes.

Note that the pointer attributes from Definition 3.10 and 3.11 can be used to abbreviate the
definitions of� l and� s,d. Although state sequence and pointer attribute definitionswould
reference each other, they would remain well defined for the reasons mentioned earlier.

3.4.3 MPI 2

In addition to simple point-to-point communication and collective communication among
the members of a group of processes as provided by the first version ofMPI, theMPI Forum
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decided to make more advanced features, such as parallel fileIO, Remote Memory Access
(RMA), and dynamic process management, part ofMPI and publish it as the latest version
MPI 2 [53].

Parallel file IO was devised to increase the performance of fileIO operations. TheIO
features ofMPI 2 not available in traditionalUNIX IO include noncontiguous access in both
memory and file, collectiveIO operations, use of explicit offsets to avoid separate seeks,
shared file pointers, non-blockingIO, portable and customized data representations, and
hints for the implementation and file system.

Whereas traditional point-to-point communication combines communication and synchro-
nization by requiring each side to explicitly invoke an operation and to supply message
parameters,RMA is based on a separation of the two concerns by allowing a process to
access another process’s memory without that process’s explicit participation. However, to
maintain consistency of memory accesses eachRMA epoch is embraced by specific syn-
chronization operations depending on theRMA access category.

Similar toPVM [29], MPI 2 allows the dynamic startup of processes. This feature serves two
goals: the dynamic adjustment of the number of processes to work on the problem at hand
and the connection of twoMPI applications started separately. Central to this feature are
intercommunicators, which distinguish between a local anda remote group of processes.

3.5 Model Enhancement: OpenMP

The OpenMP interface for shared-memory programming offers a set of directives that can
be inserted into the source code to instruct the compiler to parallelize code sections, such
as loops. In addition, the application may call OpenMP library functions to control the
parallel environment or to perform lock synchronization.

3.5.1 Basic Event Model

The execution of an OpenMP application follows the fork-join model. The program starts
with a master thread, which creates a team of slave threads when entering a parallel region.
The team is terminated after leaving the parallel region andonly the master thread resumes
its execution. Thus, the locations of OpenMP events are threads.

However, when using nested parallelism by allowing slave threads to create subteams, the
unique identification of a thread is no longer possible because the OpenMP library treats
every team as a separate name space for thread identifiers. That is, when a new subteam
has been created the application can only ask for the identifier of a thread relative to the
name space of that subteam. For this reason and due to the large number of applications
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that do not make use of this feature, nested parallelism is ignored here and it is assumed
that there is no nested execution of parallel regions.

If nested parallelism is ignored, threads can be uniquely identified by their thread number.
Thus, each location is an element ofL := T = {0, . . . , nt − 1} , wherent is the total
number of threads. The thread number can be obtained using anOpenMP library call. The
master thread always has the thread number0. For simplicity, it is assumed that the team
size used in parallel regions remains constant during the entire program execution and is
not dynamically adjusted.

A thread with thread numbert that is created before and terminated after a parallel region is
considered to be the same location as a thread with the same thread numbert that is created
before and terminated after another parallel region. The thread is assumed to be suspended
instead of really being terminated. Thus, the total number of locations only depends on the
maximum number of threads running simultaneously.

The static view of OpenMP applications is similar to that ofMPI applications in that an
OpenMP application’s source code is also made up of regions. However, apart from regions,
such as functions, loops, and basic blocks, which can be found in MPI applications as well,
there are regions that are defined by enclosing them with directives. The resulting regions
are called OpenMP constructs.

Thus, the basic event model for OpenMP includesEnter andExit events as the basicMPI

model does. However, an OpenMP application may use multiple OpenMP constructs of the
same type at different places in the source code. For this reason, it is assumed that the
region attribute of OpenMP constructsboth makes different regions of the same type dis-
tinguishable and also encodes the construct type. This is expressed by a functionregtype()
which can be applied to the region attribute ofEnterevents and which provides the required
distinction among different types of OpenMP constructs.

In contrast to traditionalMPI, where all processes start from the very beginning2, OpenMP

starts with only one master thread, which forks into parallel execution only after reaching
the first parallel region. Also, after finishing a parallel region the slave threads are ter-
minated and the master thread is the only one that continues execution. To identify the
points in time when the execution switches from serial to parallel mode and vice versa,
the OpenMP event model defines two event typesFork andJoin that are placed immediately
before the start of parallel execution and after the end of parallel execution, respectively.
They both inherit from a common base typeTeam.

In OpenMP applications, the threads of a team execute parallel constructs collectively, that
is, those constructs that are intended to be simultaneouslyexecuted by multiple threads are
executed by all threads and in the same order. Thus, the execution of OpenMP parallel
constructs follows the same rules concerning the order and participation asMPI collective

2Note that the latest versionMPI 2 allows process creation during run time as an advanced feature.
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operations do. The difference toMPI is that the group of locations is not represented by
a communicator but by a team of threads. For pure OpenMP applications without nested
parallelism this is the set of all threads. Figure 3.4 shows the execution of a parallel-region
construct. The master thread generatesFork andJoin events immediately before and after
this parallel-region construct.
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slave
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Figure 3.4: Collective execution of an OpenMP parallel region.

To let an event trace reflect the collective execution of parallel constructs, their execution is
finished by generating anOMPCExitevent instead of a regularExit event. Parallel constructs
are those OpenMP constructs that are executed by multiple threads to exploitor control
parallelism. They are listed below:

• parallel

• (parallel) do/for

• (parallel) sections

• (parallel) workshare

• single

• barrier (implicit and explicit)

Note that an implicit (i.e., compiler-generated) barrier associated with a parallel construct
is considered to be a separate construct and is treated the same way as an explicit (i.e., user-
specified) barrier, except that its source-code location cannot be determined explicitly. So
when executing a parallel construct with implicit barrier,the control flow is assumed to
perform a nested execution of a parallel construct without an implicit barrier but with an
enclosed execution of an “explicit” barrier at its end. Again, OMPCExit is a specialization
of Exit. However, this time the specialization does not carry any additional attributes, it
denotes only a more specialized context.
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The OpenMP event model also includes lock synchronization. There is one typeAlock for
the event of acquiring a lock and one typeRlock for the event of releasing a lock. Of course,
anAlock event always occurs before its correspondingRlock event. Similar toMPI point-to-
point event types, these event types actually describe a non-atomic activity, so both events
represent only one small point in time of the actual duration. Therefore, anAlock denotes
the first moment after the lock has been acquired, and anRlock denotes the first moment
after the lock has been released. That is, the thread is in possession of the lock only between
theAlock and the correspondingRlock event.

To identify the lock they refer to, both types carry an attributelockthat contains an identifier
of the lock object they operate on. This attribute is inherited from a common base type
Sync indicating an event related to lock synchronization.Syncevents are usually placed
in between theEnterandExit events of the corresponding OpenMP library functions. The
complete basic event model for OpenMP is depicted in Figure 3.5.

Event

location
time

Alock Rlock

Sync

OMPCExit

Fork Join

Team

lock

Enter Exit

RegionEvent

region

call site

Figure 3.5: Basic event model for OpenMP applications. Spotted boxes represent OpenMP-
specific event types.

3.5.2 Enhancement

Some of the abstractions defined forMPI apply to OpenMP as well. These include the
region stack and theenterptr attribute that refer to the control flow as it appears in appli-
cations of both programming models. And as already anticipated, the treatment of parallel-
construct instances is similar to that ofMPI collective-operation instances. However, a fea-
ture different fromMPI is lock synchronization. Here, a way to track the ownership history
of a lock object is presented.
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Also, the region-stack concept is extended to take into account the fact that a slave thread
is a copy of an already running program in contrast to a program starting from the very be-
ginning. Again, the definition of auxiliary functions and constants simplifies the definitions
presented in this section.

Definition 3.12. Let l ∈ L be a location:

master := 0

isslave(l) :=

{
true if l 6= 0

false else

�

The constantmaster just identifies the unique master thread, which has the thread number
zero, whereasisslave() is a predicate that indicates whether a location is not the master
thread, that is, whether its thread number is not equal to zero.

State Sequences

The capture of parallel-construct instances follows the same principle as the capture ofMPI

collective-operation instances does. As already mentioned, parallel constructs are executed
by all threads and in the same order. Since there is only one group of locations (i.e., the
team of threads= L), only one state sequence for the whole team is defined.

Definition 3.13 (Parallel-Construct Queue).The parallel-construct queue� is a state
sequence that collects theOMPCExit events of active OpenMP parallel-construct instances.
Its transition operator	 is defined by the following transition functions:

	OMPCExit : � i := � i−1 ∪ {ei}

	Event : � i :=

{
� i−1 \ Inst if ∀l ∈ L : |haveloc(� i−1, l)| ≥ 1

� i−1 else

where Inst :=
⋃
l∈L

leastrcnt(haveloc(� i−1, l))

�

An OMPCExit event is added to� i−1 by applying the function	OMPCExit. As soon as
all OMPCExit events belonging to a parallel-construct instance are elements of� i−1, they
are removed by applying	Event. A function ompcoll() to access the events belonging to
the same parallel-construct instance can be defined in a way analogous tompicoll() in
Definition 3.9.
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When an OpenMP application forks into parallel execution, it creates one or more copies of
the master thread. The slaves do not start their execution atthe main function, instead they
start at the entry of a parallel region. Since the region stack from Definition 3.6 collects
events from only one location, the first candidate to be collected for a slave would be the
Enterevent of the parallel region. However, somebody might be interested in the call path
leading to that parallel region and so it seems reasonable tolet a slave inherit the region
stack of its master. Therefore, the region stack is extendedin such a way that slaves always
get the region stack of their master upon their creation.

Definition 3.14 (Inherited Stack). The inherited stack
l of a locationl ∈ L is a state
sequence that collects theEnterevents of active region instances at locationl. If l is a slave
thread,
 l inherits the stack of its master upon creation. The transition operator�l of 
l is
defined by the following transition functions:

�lEnter : 
l
i :=

{

l
i−1 ∪ {ei} if ei.loc = l


l
i−1 else

�lExit : 
l
i :=

{

l
i−1 \ mostrcnt(
l

i−1) if ei.loc = l


l
i−1 else

�lF ork : 
l
i :=

{

master
i−1 if isslave(l)


l
i−1 else

�lJoin : 
l
i :=

{
∅ if isslave(l)


l
i−1 else

�

The first two functions�lEnter and�lExit work exactly as the functions of the previously de-
fined region stack do. They just collectEnterevents and remove them upon the occurrence
of their correspondingExit events. The difference comes with the third and fourth function.
In the case of the master thread,�lF ork and �lJoin behave neutrally. In the case of a slave
thread, however,�lF ork takes the (inherited) region stack of the master and assignsit to 
l

i.
After that, the inherited stack contains not only theEnterevents from its own locationl but
also theEnterevents of the master at the moment when the slave was created.After parallel
execution is finished,�lJoin reflects the slave’s termination in that it assigns the emptyset to

l

i.

The programmer of an OpenMP application is able to control synchronization explicitlyby
calling OpenMP lock-synchronization functions. Among other mechanisms lock synchro-
nization may have an important influence on the performance behavior of an application.
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To track the ownership history of a lock object, it is useful to define an auxiliary state
sequence that remembers its last change of ownership.

Definition 3.15 (Ownership Status).Let K be the set of all locks used at run time. The
ownership status�k of a lockk ∈ K is an auxiliary state sequence that contains the most
recent event changing the ownership status ofk. Its transition operator
k is defined by the
following transition function:


kSync : �k
i :=

{
{ei} if ei.lock = k

�k
i−1 else

�

This auxiliary state sequence is not intended to be used directly, instead it is used in the
next subsection to define a pointer attribute linking the events that constitute a lock object’s
ownership history.

Pointer attributes

If a lock has finally been acquired after waiting a considerable period of time, it is inter-
esting to know why the lock was unavailable. Also, if a lock has been released, it is useful
to find out when it was acquired. Both questions can be answered by providing a pointer
attribute that links a lock-ownership event, that is, aSyncevent, to the precedingSyncevent
referring to the same lock object.

Definition 3.16 (lockptr). Thelockptr attribute is a pointer attribute for aSynceventei ∈
ESync that points to the precedingSyncevent operating on the same lock object:

ei.lockptr :=

{
ej if � ei.lock

i−1 = {ej}

null else (in this case is � ei.lock
i−1 = ∅)

�

It is clear that thelockptr of anRlock event always points to anAlock event and thelockptr
of an Alock event always points to anRlock event. Only the firstAlock event of a lock
object points tonull because it represents the start of the ownership history. Figure 3.6
shows how to navigate along a lock object’s ownership history using thelockptr attribute.
A lock object is acquired the first time by thread A usingomp set lock. Because there is
no ownership history prior to that event, thelockptr points tonull. Thread B acquires
that lock in the same way after it was released by thread A. So the lockptr of that second
acquisition points to the first release and thelockptr of the first release points to the first
acquisition.
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Figure 3.6: Navigating along the ownership history of a lockobject using thelockptr
attribute. To keep the figure simple it does not show any otherpointer attributes.

3.6 Model Enhancement: Hybrid Model

CoupledSMP systems represent a distributed-memory architecture whose nodes consist of
shared-memory components. The central idea behind the hybrid programming model is
to exploit this hybrid hardware architecture by combiningMPI with OpenMP in the same
application. In such a scenario,MPI is intended to perform the communication among
distributed memories that constitute the nodes of the system and OpenMP is intended to
share data within the shared memories of singleSMP nodes. Of course, depending on the
hardware and the algorithm there may be more than oneMPI process per node, but in most
cases it is only a single process.

Such a hybrid application runs multipleMPI processes, which may themselves consist of
multiple threads, so the run-time structure of a hybrid application resembles the hierar-
chical hardware structure. Figure 3.7 illustrates the physical and logical hierarchies in a
coupledSMP system. OneSMP node with a physical shared memory and multipleCPUs
may accommodate multiple processes, which provide a sharedaddress space to one or
more threads.

In the previous two sections the location of an event was always a logical one. In the case
of MPI it was the process, in the case of OpenMP it was the thread. Now, the event location
is a tuple consisting of a process and a thread.

Moreover, it may be useful to augment this tuple by adding a physical part containing infor-
mation on theCPU, SMP node, or even machine if there are multiple machines involved in
the same computation. For example, theMPI communication characteristics between two
processes may depend on their physical location, that is, whether they reside on different
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Figure 3.7: The physical and logical structure of coupledSMPs.

SMP nodes of the same machine or even on different machines.

However, whereas the machine and theSMP node are easily identifiable in most cases, it
is very difficult to determine theCPU on which an event happens because most operating
systems do not provide functions to ask for it and, in addition, a process or thread may
switch rapidly among differentCPUs on the sameSMP node so that the result of a query
may not reflect theCPU at the moment when the query is issued. For this reason, the
location of an event is now described as a tuple (machine,SMP node, process, thread). The
location coordinates are written in the order of increasinggranularity because a machine
may have multipleSMP nodes, which may accommodate multiple processes each running
multiple threads.

Definition 3.17 (Location (hybrid)). The location l ∈ L of an event occurring during
execution of a hybrid application is a tuple(m, s, p, t). m denotes a machine (i.e., a coupled
SMP system),s denotes anSMP node of that machine,p denotes a process, andt denotes
a thread of that process. The different coordinates of a location l ∈ L are referenced as
l.coordinate (e.g.,l.p).

It is assumed that each process has a fixedSMP nodes = s(p) and machinem = m(p),
that is, a process may not migrate betweenSMP nodes or even machines.

Processes are uniquely identified by their rankp ∈ P = {0, . . . , np − 1} in
MPI COMM WORLD, which is a global identifier across all physical locations.np is the
total number of processes.

Threads are identified by their OpenMP thread numbert ∈ T (p) = {0, . . . , nt(p) − 1}.
The thread number is an identifier local to the processp. nt(p) is the maximum number of
threads spawned by processp. The master thread of a process always has thread number
zero.

A thread with thread numbert that is created before and terminated after a parallel region
is assumed to be the same location as a thread with the same thread numbert that is
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created before and terminated after another parallel region. Thus, the total number of
locations owned by a process only depends on the maximum number of threads executed
simultaneously as part of that process.

Thus, the set of locations is:

L := {(m(p), s(p), p, t)| p ∈ P, t ∈ T (p)}

�

It follows that the total number of locations owned by a wholeapplication is just the sum
of the maximum thread numbers across all processes:

|L| =
∑

p∈P

|T (p)| =
∑

p∈P

nt(p)

Definition 3.17 says nothing about machine andSMP-node identifiers because they are not
used to define any abstractions. Also, they are not standardized and may vary from platform
to platform.

The combination ofMPI and OpenMP is possible in three different modes, which are de-
scribed in order of increasing generality. The first mode allowsMPI calls to be made only
by the master thread. The second mode allowsMPI calls to be made by an arbitrary thread,
but in a serialized fashion, that is, only one thread at a time. The third mode imposes no
restriction at all on the order and location ofMPI calls.

The event model requires information on the source and destination location to be attached
to theSendandReceiveevents of a point-to-point message. From an instrumenter’sperspec-
tive, this is easy in the case of the first mode because this information is already supplied
as an argument to point-to-point functions since the sourceor destination process always
corresponds to one unique master thread. The second mode already requires complicated
postprocessing of the event trace to match corresponding point-to-point events in order
to calculate the correct source and destination locations.Also, the group associated with a
communicator would no longer be a set of locations. Instead,it would be a set of processes,
that is, a set of sets of locations (i.e., threads). Finally,the third mode, which allows the
concurrent execution ofMPI calls by multiple threads of the same team, makes it difficultto
identify matchingSendandReceiveevents because multiple threads may attempt to receive a
message directed to a certain process. For this reason and due to the predominant practical
importance of the first mode, the following discussion is restricted to the first mode, which
allows only the master thread to invokeMPI operations.

The types in the hybrid event model are the union of the types from the separate models.
The complete type hierarchy is depicted in Figure 3.8. Hatched boxes representMPI-
specific event types and spotted boxes represent OpenMP-specific event types. Attribute
names that have not been defined so far will be introduced later in this section.
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The remainder of this section describes how the models for single programming models
need to be adapted to be suitable for the hybrid programming model. Moreover, an addi-
tional abstraction is introduced that allows the context ofan event to be captured in a more
convenient way than that provided by the abstractions developed so far.

3.6.1 MPI

The abstractions of the former model also remain valid in view of hybrid programming.
The region stack, which is actually not related to a specific programming model, requires
no changes. Also, the message queue and the collective-operation queue can remain un-
modified, and the pointer attributesenterptr and sendptr do not need any changes ei-
ther. Of course, the message queue needs to be considered only for pairs of source and
destination locations that represent master threads, which have thread number zero (i.e.,
(m, s, p, 0)). As a consequence, a communicator’s group is always a set of master-thread
locations.

3.6.2 OpenMP

The abstractions defined for OpenMP require only minor modifications to take into account
the fact that hybrid applications may have multiple master threads as a consequence of
having multiple processes. So the previously defined constant master is turned into a
function that maps an arbitrary thread onto its master thread just by setting the thread
number to zero and keeping the process number. In addition, the setTeam(p) denotes
those locations that have the process numberp.

Definition 3.18. Let l ∈ L be a location withl = (m, s, p, t) andp ∈ P a process number:

master(l) := (m, s, p, 0)

Team(p) := {l ∈ L| l.p = p}

�

Consequently, the state sequence� for the capture of parallel-construct instances now
needs to be defined separately for each processp because parallel constructs are collectively
executed only by threads belonging to the same process.�p collectsOMPCExit events
occurring as part of processp, and removes them upon completion of the parallel-construct
instance.
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Definition 3.19 (Parallel-Construct Queue (hybrid)). The parallel-construct queue�p

of a processp is a state sequence that collects theOMPCExit events of active OpenMP

parallel-construct instances of the processp. Its transition operator	p is defined by the
following transition functions:

	p
OMPCExit : �p

i := �p
i−1 ∪ {ei} if ei.loc.p = p

	p
Event : �p

i :=

{
�p

i−1 \ Inst if ∀l ∈ Team(p) : |haveloc(�p
i−1, l)| ≥ 1

�p
i−1 else

where Inst :=
⋃

l∈Team(p)

leastrcnt(haveloc(�p
i−1, l))

�

Also, the transition function�lF ork of the inherited stack
l, which is responsible for handing
over the stack of the master thread, now refers to the master thread of the location it is
associated with.

Definition 3.20 (Inherited Stack (hybrid)). The inherited stack
l of a locationl ∈ L is
a state sequence that collects theEnterevents of active region instances at locationl. If l is
a slave thread,
l inherits the stack of its master upon creation. The transition operator�l of

l is defined by the following transition functions:

�lEnter : 
l
i :=

{

l
i−1 ∪ {ei} if ei.loc = l


l
i−1 else

�lExit : 
l
i :=

{

l
i−1 \ mostrcnt(
l

i−1) if ei.loc = l


l
i−1 else

�lF ork : 
l
i :=

{

master(l)
i−1 if isslave(l)


l
i−1 else

�lJoin : 
l
i :=

{
∅ if isslave(l)


l
i−1 else

�

Note that care should be taken when creating lock-object identifiers to be used as values
for the lock attribute. The current definition of�k expects that each lock object has an
identifier that is also unique across different processes, so the instrumentation system must
ensure this uniqueness also across process borders or the definitions of �k and lockptr
must be modified in a way that distinguishes among different processes.
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3.6.3 Dynamic Call Path

Optimizing a parallel application requires knowledge of which parts of the program are
responsible for inefficient behavior. However, identifying the weak parts means not only
identifying code regions where inefficient behavior takes place, but also understanding the
context in which it happens; that is, the purpose for which these region have been visited.

The (inherited) region stack provides exactly this contextin that it gives the user the full
path of regions that have been visited on the way to the current region. Although this region
path may contain regions that cannot be entered by calling a function, this thesis refers to it
as thecall pathbecause most readers are presumably more familiar with thisdesignation.

However, the stack contains more information than necessary because in many cases the
user is not interested in the time at which the individual predecessor regions have been
entered. In addition, finding out whether two events have thesame call path requires a
tedious comparison of their respective region stacks.

The set of all call paths in a program forms a structure that iscommonly called thecall
graph. The call graph created from considering potential call paths through static analysis
is called thestatic call graph, whereas the call graph created from call paths that have
really been executed during run time is called thedynamic call graph. Because event
traces reflect only call paths visited during program execution, only the dynamic call graph
is considered in the following.

The nodes of the call graph represent call paths visited during program execution and the
directed edges represent transitions between call paths that have occurred during program
execution while entering a new region, that is, while generating an Enter event. Before
considering the dynamic call graph in more detail, the call path of anEnterevent is defined
and the notion of call-path equivalence between twoEnterevents is introduced.

Definition 3.21 (Call Path). The call pathcpath(e) visited by anEnterevente ∈ EEnter

is a sequence of pairs (region, call site), which can be derived from the inherited stack of
the event’s location by extracting the corresponding attributes from the events of
e.loc(e)
in the order of their occurrence in the event trace:

cpath(e) := (r1, c1) ◦ . . . ◦ (rn, cn)

where 
e.loc(e) = {ei1, . . . , ein} ∧
(∀ 1 ≤ j, k ≤ n : j < k ⇒ eij < eik) ∧
(∀ 1 ≤ j ≤ n : eij .reg = rj ∧ eij .csite = cj)

The symbol◦ concatenates element pairs to form a sequence.

�
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Definition 3.22 (Call-Path Equivalence).Two Enter eventse, f ∈ EEnter are call-path
equivalente ≡cp f if and only if they have the same call path:

e ≡cp f ⇔ cpath(e) = cpath(f)

�

The call-path equivalence identifiesEnterevents having the same call path. Since it is an
equivalence relation, it partitions allEnterevents into classes of call-path equivalent events.
This suggests encoding the nodesN of the call graph, which are nothing but call paths, as
representatives of such equivalence classes. One way to define a representative for each
class is to take the firstEnter event visiting the corresponding call path, that is, the least
recent one in the class.

Definition 3.23 (Call-Path Representative).The representativee of the call-path–
equivalence class anEnterevente belongs to is the least recent one in the class:

e := leastrcnt({f ∈ EEnter| e ≡cp f})

�

Thus, the set of nodesN in the call graph can be written as the set ofEnter events that
represent themselves:

N := {n ∈ EEnter| n = n} (3.5)

There is an edge from a nodel ∈ N to a noder ∈ N if and only if cpath(l) ◦
(r.reg, r.csite) = cpath(r), that is, if there exists anEnter event that moves froml to r.
Consequently, there is an edge froml to r if and only if:

∃e ∈ EEnter : e.enterptr = l ∧ e = r (3.6)

The condition above requires that there is anEnterevent executing a transition from the call
path (i.e., node) represented byl to that represented byr. Obviously, if there is such an
evente the condition is satisfied bye’s representativee = r as well and, vice versa, because
e moves between the same call paths ase does. So it is possible to rewrite Condition 3.6
as:

r.enterptr = l (3.7)

It follows that the set of edges can be derived solely from elements ofN , that is,N encodes
the whole call graph. Whereas the nodes are encoded as representatives, the edges are
implicitly provided by the above relationship (3.7). To be able to associate a compound
event with the call path where it happens, it seems reasonable to have a pointer attribute
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cnodeptr of an Enter eventei ∈ EEnter that points to the corresponding call-graph node
(i.e., its representative):

ei.cnodeptr := ei (3.8)

However, it is not obvious whether this (3.8) is a definition compliant with the definition
template for pointer attributes (3.4). To give a compliant definition of cnodeptr, it is as-
sumed to be defined for now and, on this basis, two auxiliary abstractions are defined that
can be used to provide a valid definition forcnodeptr.

Definition 3.24 (cedgeptr).Thecedgeptr attribute is a pointer attribute for anEnterevent
ei ∈ EEnter that points to the call-graph node (i.e., its representative) that has been left by
ei:

ei.cedgeptr :=

{
ei.enterptr.cnodeptr = ei.enterptr if ei.enterptr 6= null

null else

�

Note thatcedgeptr encapsulates the relationship that must exist between two nodes to
have an edge connecting them. Although Definition 3.24 refers to a pointer attribute ofei,
it is compliant with the definition template for pointer attributes (3.4). This is because the
expressionsei.enterptr can be replaced by a function of�ei.loc

i−1 (see Definition 3.10). Due
to the inductive way of definingei.cedgeptr, �ei.loc

i−1 and all{e.cnodeptr| e ∈ � ei.loc
i−1 } can

be assumed to be already defined. Also, the definition ofei.cedgeptr satisfies the working-
set requirement (Section 3.3.3) because to calculateei.cedgeptr it is only necessary to
accessei and�ei.loc

i−1 .

The second abstraction is an auxiliary state sequence� that collects all call-path repre-
sentatives and encodes the part of the dynamic call graph that has been visited so far. As
already mentioned, the edges can be derived from the nodes, so it is sufficient to collect the
nodes. However, the edge condition will contribute to the definition of � .

Definition 3.25 (Dynamic Call Graph). Thedynamic call graph� is a state sequence that
collects all call-path representatives. Its transition operator� is defined by the following
transition function:

�Enter : � i :=






� i−1 ∪ {ei} if � l, r ∈ � i−1 :

( r.cedgeptr = l ∧

ei.cedgeptr = l ∧

ei.reg = r.reg ∧

ei.csite = r.csite )

� i−1 else

�
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An Enterevent is added to� i−1 if there is no edge in the call graph as represented by� i−1

that describes a transition between the call path left byei and the one visited byei. If there
is no such edge contained in� i−1 then a a new node with a new implicit edge is added in
the form ofei. If there is already such an edge,� remains as it is when moving from� i−1

to � i.

The first part of the conjunction in�Enter requiresl andr to be an edge(l, r) in the call
graph. The second part ensures that the call path left byei is equal to the call path visited by
l, whereas the last two parts ensure that the call path visitedby ei is equal to that visited by
r. The full condition guarantees that the event added to� i−1 is a call-path representative
because it requires that the corresponding call path has never been seen before, which
follows from the nonexistence of an edge leading to that callpath.

� i is well defined because due to the inductive nature of defining� i, � i−1 andei.cedgeptr
can be assumed to be already defined. It is obvious that the definition of � i satisfies the
working-set requirement. Note that, in contrast to the state sequences defined so far,�
never shrinks in size because the dynamic call graph never becomes smaller while program
execution is proceeding. Now, it is easy to give a new definition of thecnodeptr attribute
(3.8) according to the template (3.4).

Definition 3.26 (cnodeptr). Thecnodeptr attribute is a pointer attribute for anEnterevent
ei ∈ EEnter that points to the call-graph node (i.e., its representative) that has been visited
by ei:

ei.cnodeptr :=






r if ∃ l, r ∈ � i−1 :

( r.cedgeptr = l ∧

ei.cedgeptr = l ∧

ei.reg = r.reg ∧

ei.csite = r.csite )

ei else

�

The condition in Definition 3.26 is the negation of that used in Definition 3.25. It asks
whether the call path visited byei has been seen before. If so, the attribute points to the
corresponding representativer ∈ � i−1. If not, it is a representative itself, in which case it
must point to itself. Note that there is at most oner ∈ � i−1 with those properties because
each equivalence class has only one representative.

Similar to Definition 3.24, Definition 3.26 refers to a pointer attribute ofei. However, by
replacingei.cedgeptr by the right-hand side of its definition and by expanding there the
expressionei.enterptr, which then appears as a function of�ei.loc

i−1 , it becomes obvious that
Definition 3.26 is compliant with the definition template forpointer attributes (3.4) and that
it satisfies the working-set requirement.
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Note that this view of the call graph does not include a special treatment of recursive
programs. Each step in a recursion may create an additional node in the call graph instead
of forming a cycle. For this reason, the call graph will form atree if it has only one root
path. This condition is usually satisfied in standard single-program multiple-data (SPMD)
scenarios, where each instance of the program starts at the same main routine.

As will be demonstrated in Section 3.8.3, thecnodeptr attribute provides a convenient
means to associate a performance-relevant compound event with the corresponding node
in the call graph and, thus, to quickly determine and comparethe execution context of
different compound events.

3.6.4 Summary

This subsection summarizes the enhanced model for hybrid applications including event
types and constraints and gives an overview of all abstractions introduced so far. The
model for hybrid applications comprises the union of all event types contained in the indi-
vidual models forMPI and OpenMP. This union includes types referring to the control flow
that denote the entry and the exit of a program region. In addition, MPI-specific event types
include sending and receiving point-to-point messages as well as leaving collective opera-
tions; OpenMP-specific event types cover team creation and termination, the exit of parallel
constructs, and lock acquisition and release. Figure 3.8 shows the complete event-type hi-
erarchy. It also shows the pointer attributes in bold-face letters added to the basic attributes.
Since the hybrid event model includes the execution of pureMPI and pure OpenMP appli-
cations as special cases, from now on everything will be expressed in terms of this hybrid
event model. Those abstractions that have been introduced as auxiliary ones are necessary
to define other abstractions but are not intended to be used incompound-event specifica-
tions.

Constraints. The entries and exits of region instances occurring on the same location
must form a correct parenthesis expression, that is, a region is only allowed to be left after
all enclosed regions have been left. In addition, theSendevent of anMPI message must
occur before its correspondingRecvevent, andMPI collective operations must be executed
in the same order by all members of the group associated with the communicator. Similar
to MPI, OpenMP parallel constructs must be executed in the same order by allthreads of
the team. Finally, anAlock event must always occur before its correspondingRlock event
and twoAlock events operating on the same lock are not allowed to follow each other
immediately without an intermediateRlock event that releases that lock before it can be
acquired again.
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Figure 3.8: The type hierarchy for hybrid applications including the pointer attributes in
bold-face letters. Hatched boxes representMPI-specific event types and spotted boxes rep-
resent OpenMP-specific event types.

State sequences. The enhanced model provides state sequences to capture events that
are still relevant to the context of a given event in contrastto events that are not relevant
because they refer to already completed activities.

• � l (Definition 3.6): One region stack per locationl that remembers allEnterevents
of active region instances at locationl.

• 
l (Definition 3.20): One inherited region stack per locationl that remembers all
Enterevents of active region instances at locationl and, in addition, for slave threads
copies the (inherited) region stack of their master thread upon their creation.

• � s,d (Definition 3.7): One message queue per location pair sources and destination
d that remembers allSendevents of messages currently being transferred froms to d.
According to the restriction thatMPI statements are only allowed to be executed by
the master thread, there are message queues only for source and destination locations
that represent master threads (i.e.,(m, s, p, 0)).

• �c (Definition 3.8): One state sequence per communicatorc that collects all events
belonging to the same instance of anMPI collective operation. Ife is an event
that completes such a collective operation, then the functionmpicoll(e) delivers all
events belonging to that instance, otherwise it delivers the empty set.

• �p (Definition 3.19): One state sequence per team represented by a processp that
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collects all events belonging to the same instance of an OpenMP parallel construct. If
e is an event that completes such a collective operation, thenthe functionompcoll(e)
delivers all events belonging to that instance, otherwise it delivers the empty set.

• �k (Definition 3.15): One auxiliary state sequence per lock objectk that starts as an
empty set and after the first acquisition of that lock object always contains the last
event changing the lock’s ownership status.

• � (Definition 3.25): One auxiliary state sequence that collects all call-path repre-
sentatives and encodes the part of the dynamic call graph that has been visited so
far.

Thus, the flat overall stateΓi of an eventei in the hybrid model is the union:

Γi =
⋃

l∈L

� l
i ∪

⋃

l∈L


l
i ∪

⋃

s,d∈L

� s,d
i ∪

⋃

c∈C

�c
i ∪

⋃

p∈P

�p
i ∪

⋃

k∈K

�k
i ∪ � i

To allow the efficient computation of abstractions related to ei, it is sufficient to provide
fast access to the elements of∆i = Γi−1 ∪ {ei} because others need not be accessed.

Pointer attributes. The enhanced model provides pointer attributes that link related
events together to give better access to instances of higher-level concepts, such as region
instances, messages, a lock’s ownership history, and the call path.

• enterptr (Definition 3.10): Each event provides anenterptr attribute pointing to the
Enterevent of the currently active region instance at the location of that event. The
enterptr attributes of events occurring at top level points tonull.

• sendptr (Definition 3.11): EachReceiveevent provides asendptr attribute pointing
to the correspondingSendevent.

• lockptr (Definition 3.16): EachSyncevent provides alockptr attribute pointing to
the lastSyncevent changing the ownership status of the same lock. If theSyncevent
is the first event operating on that lock, thelockptr attribute points tonull.

• cedgeptr (Definition 3.24): EachEnterevent provides an auxiliarycedgeptr attribute
pointing to the call-graph node (i.e., its representativeEnterevent) that has been left
by that event. If the call-graph node visited by that event isan entry point to the call
graph, the attribute points tonull.

• cnodeptr (Definition 3.26): EachEnterevent provides acnodeptr attribute pointing
to the call-graph node (i.e., theEnter event representing that node) that has been
visited by that event.
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3.7 Specifying Compound Events

In the preceding sections an event model has been defined thatallows simple behavioral
elements of a parallel application to be described. This section explains how to combine
these elements to higher-level compound events.

A specification method for compound events representing performance properties of a par-
allel or distributed application should meet the followingrequirements:

1. It should be simple even in the case of complex compound events.

2. It should allow for an efficient implementation.

The first requirement demands the specification of the relationships among the constituent
events of a compound event on a very high level of abstraction. The second requirement
concerns the efficiency of possible search methods. This is especially important in view of
the huge amount of data typically involved in event tracing.It seems that both requirements
can be fulfilled on the basis of enhanced event models. First,a general scheme for speci-
fying compound events is introduced and then it is explainedhow enhanced event models
in conjunction with the scheme proposed here are able to meetthe two requirements.

Definition 3.27 (Compound Event).A compound eventC ⊆ E is a subset of events of
an event traceE. The elements of this subset are called theconstituentsof the compound
event. The set of constituents can be divided into a set of notnecessarily disjoint subsets,
which are called thefractionsof the compound event:

C :=
⋃

i∈I

Ci, I = {1, . . . , n}

The fractions are connected by relationships that can be expressed using functional depen-
dencies:

Ci := fi(C
′), C ′ =

⋃

j∈J

Cj, J ⊂ I

The resulting dependency graph must be acyclic. Furthermore, eachCi except for one
fraction has at least one predecessorCj 6=i it depends on. In addition, there is one fraction
that has no predecessor and that contains only a single event. This fraction is called the
root fractionand the single event inside is called theroot event.

The root event is characterized by aroot predicatethat can be used to decide whether an
arbitrary event from the trace is a possible root event.

�
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A compound eventC consists of a set of primitive events (i.e., its constituents). A con-
stituent event is an instance of an event type defined in an enhanced event model. The
fractions reflect the logical structure of the compound event. The relationships that con-
nect the different fractions can be expressed using functional dependenciesfi which map a
set of events onto another set of events from the trace. The functions may use the abstrac-
tions provided by an enhanced event model (i.e., state sequences and pointer attributes).

However, to be useful for the purpose of specifying compoundevents this scheme must
meet several conditions. As already mentioned, it must ensure that the corresponding de-
pendency graph is acyclic. Furthermore, eachCi except for oneroot fraction must have
at least one predecessorCj 6=i that it depends on. So everyCi can be calculated from the
root fraction by evaluating the functional dependencies. Of course, it is possible that an
evaluation step fails, so eachfi can also be considered as a predicate imposing constraints
on the structure of the compound event. As a final condition the root fraction is required to
have exactly one element because in this way it can be easily characterized using a simple
predicate. The root predicate can be applied to an arbitraryevent in order to decide whether
it is a possible root event.

Note that in many cases the fractionsCi ⊆ C will consist of only a single event. Neverthe-
less, permitting multiple events to be members of such a subset is necessary, for example,
to make complete states of a state sequence orMPI collective-operation instances part of a
compound event.

Algorithm 3.1. To locate all occurrences of a compound eventC in an event traceE
perform the following for all eventse ∈ E:

1. Apply the root predicate toe.

2. If successful, instantiate all constituents that are reachable from the root event by
evaluating the functional dependencies.

3. Instantiate all constituents that are reachable from theconstituents already instanti-
ated.

4. Repeat step 3 until all constituents are instantiated or an instantiation step fails. If
all constituents have been instantiated, one instance ofC has been found.

�

Note that to avoid two different root events leading to the instantiation of the same com-
pound event it is necessary to either check for double instantiation or to ensure that each
compound-event specification provides one unique root event.

Recall the two requirements from the beginning of this section. An enhanced event model
provides abstractions that correspond to the vocabulary ofthe programming model used.
By using these abstractions when defining the functions involved in the definition of a
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whole compound event, it should be possible to produce a simple and understandable spec-
ification for most of the compound events representing typical performance properties. A
demonstration of this will be given in Section 3.8.

The efficiency of an implementation of Algorithm 3.1, which is addressed by the second
requirement, relies heavily on the mechanism used for accessing events. Consider the
following typical scenario. In order to apply the algorithmfor locating instances of a
compound event, a search tool walks sequentially through the event trace. If an event
fulfills the root predicate, the tool will start to evaluate the tree of functional dependencies
used for defining the compound event. It will try to access other events from the event
trace. As already mentioned, most of these events belong to the context (i.e., events from
the overall state) of the root event or of events belonging tothe recent past of the root event.
All the tool is required to do is to track the overall state of the events it accesses during its
sequential walk and to provide efficient buffered access to the working sets of a relatively
small contiguous window of the event trace.

Of course, the scheme itself does not impose any restrictions on the complexity of the
functionsfi, so these have to be defined carefully. Nevertheless, the design of the EX-
PERT performance tool presented in Chapter 4 suggests that in thecontext of performance
analysis the complexity of the required functions is manageable.

3.8 Example Compound Events

This section shows that complex performance properties of parallel applications can be
easily represented by applying the previously presented scheme. The properties are speci-
fied as compound events, thereby making use of the previouslydefined abstractions. Note
that all examples require a performance-data granularity for their representation that is
provided only by event traces. Although the performance properties are sorted accord-
ing to the programming model to which they refer, the corresponding compound events
are always based on the hybrid event model because the hybridmodel contains the single
programming models as special cases.

In the following compound-event examples, a symbol beginning with a lower-case letter
denotes a single event, whereas a symbol beginning with an upper-case letter denotes a set
of events.

3.8.1 MPI

The most important performance properties related toMPI appear in conjunction with
blocking communication, which can cause significant waiting times. Note that non-
blocking communication may be affected as well, since non-blocking communication may
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be finished with a blocking operation, such asMPI Wait. In particular, collective opera-
tions, such asMPI Allreduce, frequently appear to be the source of performance problems
because their inherent all-to-all semantics have a synchronizing effect that is difficult to
avoid.

Example 3.1 (Late Sender).The first example describes the situation that occurs when an
MPI Recvoperation is posted before the correspondingMPI Sendhas been started (Figure
3.9). The receiver remains idle during the interval betweenthe two calls instead of doing
useful computation.
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Figure 3.9:Late Sendercompound event.

This compound event{{root}, {s1}, {e1}, {e2}} consists of four fractions, each containing
only a single event. The root event (root) is just the event indicating the message arrival
(i.e., an event of typeReceive). Thus, we have the following root predicate:

type(root) = Receive

The other three events are the event of sending the message (s1), the event of entering the
MPI Sendregion (e2), and the event of entering theMPI Recvregion (e1). They are defined
as follows:

s1 := root.sendptr

e1 :=

{
root.enterptr if root.enterptr.reg = MPI Recv

fail else

e2 :=






s1.enterptr if ( s1.enterptr.reg = MPI Send ∧

e2.time > e1.time )

fail else

Applying Algorithm 3.1 to this compound-event specification would result in the following
sequence of actions. When a potential candidate for the rootevent has been found by
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evaluating the root predicate, that is to say, when an event of type Receivehas been found,
the algorithm traces back thesendptr attribute of the root event to locate the corresponding
Sendevent (s1). Now the event of enteringMPI Recv(e1) is determined by navigating along
theenterptr attribute of the root event. To ensure that this event reallyrefers to a region
instance ofMPI Recv, the reg attribute is checked. Evente2 is instantiated in a similar
manner, but here an additional constraint, which is essential for the whole compound event,
must be taken into consideration. TheMPI Recv has to be called before theMPI Send.
So the two time stamps must be compared. After instantiationof all compound-event
constituents, a tool can compute the amount of wasted time bysubtracting the two time
stamps:

wasted = e2.time − e1.time

The compound event described here is a frequently occurringsituation of inefficient be-
havior, which can be observed for several real-world applications, as shown in Chapter 5.

◦
Example 3.2 (Late Receiver).This compound event refers to the inverse case. The send
operationMPI Sendblocks until the corresponding receive operation is called. This can
happen for several reasons. Either theMPI implementation is working in synchronous mode
by default, or the size of the message to be sent exceeds the availableMPI-internal buffer
space and the operation blocks until the data is transferredto the receiver. The behavior is
similar to anMPI Ssendwaiting for message delivery. The situation is depicted in Figure
3.10. The definition is very close to theLate Sendercompound event. In particular, the
root predicate is identical so it is not shown again.

s1 := root.sendptr

e1 :=

{
root.enterptr if root.enterptr.reg = MPI Recv

fail else

e2 :=






s.enterptr if ( s1.enterptr.reg = MPI Send ∧

e2.time < e1.time ∧

e2 ∈ �s1.loc(e1) )

fail else

An important difference to the previous compound event is the condition appearing in the
definition of e2. Of course,e2.time has to be less thane1.time, since the receiver has to
be later than the sender. In addition, theMPI Sendoperation must not have finished before
theMPI Recvhas been called. So it is necessary to look at the region stackof the location
from where the message was sent and at the time just after theMPI Recvcall was posted
(�s1.loc(e1)). If e2 is an element of this set,MPI SendandMPI Recvoverlap in time.
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Figure 3.10:Late Receivercompound event.

It is clear that this criterion still does not prove waiting of MPI Senddue to lack of buffer
space with maximum reliability. Nevertheless, it is a necessary condition and it is the
strongest that can be proved based on the data available in a typical event trace. A detailed
discussion of the performance problem related to this compound event can be found in [32].

This and the previous example are special cases of a larger class of similar compound
events involving alternativeMPI point-to-point communication functions.

◦
Example 3.3 (Messages in Wrong Order).The third example is taken from theGrind-
stone Test Suite for Parallel Performance Tools[39] and highlights the problem of passing
messages in the wrong order. This problem can arise if one process is expecting messages
in a certain order, but another process is sending messages that are not in the expected
order. In Figure 3.11 an extreme example is shown. In the leftpart of the picture, process
1 is processing incoming messages in the reverse sending order. Processing them in the
order they were sent would not only speed up the program but would also require much
less buffer space for storing unprocessed messages. This isshown in the right part of the
picture.

This situation is modeled as a message that is sent later but received earlier than an-
other message with the same sender and receiver. For this reason, the compound event
{{root}, {s1}} consists of two fractions, each containing only a single event. The root
event (root) is the message receipt, the other event (s1) is the message dispatch. Again, the
root predicate only requires the event type to beReceive. s1 is defined as follows:

s1 :=






root.sendptr if ∃e ∈ � root.src,root.loc(root) :

e.time < root.sendptr.time

fail else

The condition on the right-hand side requires that there areolder messages in the message
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Figure 3.11: Passing messages in the wrong order.

queue for traffic between the source and the destination location of the message under
consideration. So there have to be messages in transit that have not been received at the
time the current message has been received.

◦
Example 3.4 (Wait at N× N). This compound event involves anMPI collective operation
and deals with a problem associated with n-to-n operations,such asMPI Allreduce. Since
each process involved in such an operation has to send to as well as to receive from every
other process, no process can leave the operation until the last process has entered it. So
there is an inherent synchronization that can introduce significant waiting times.

The compound event describes the frequently occurring situation of reaching an n-to-n op-
eration at different points in time and thus introducing undesirable synchronization over-
head. The starting point is now the lastMPICExit event of anMPI Allreduceoperation in-
stance. This is expressed by the following root predicate using thempicoll() function:

type(root) = MPICExit ∧
mpicoll(root) 6= ∅ ∧
root.reg = MPI Allreduce

The compound event{{root}, E1, E2} consists of three fractions: the root fraction
({root}), the set ofMPICExit events belonging to theMPI Allreduce instance (E1), and the
Enter events of that instance (E2). E1 is instantiated using thempicoll() function. Then
E2 is computed by tracing back theenterptr attributes ofE1. For convenience,E1.attr is
used as a short cut for{v| ∃e ∈ E1 : e.attr = v}.

E1 := mpicoll(root)

E2 :=

{
E1.enterptr if ∃ei, ej ∈ E1.enterptr : ei.time 6= ej.time

fail else
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Of course, this compound event matches nearly everyMPI Allreduce instance because the
operation is almost never entered at exactly the same time atdifferent locations. How-
ever, instantiating this compound event allows the amount and location of the occurred
synchronization overhead to be computed.
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Figure 3.12: Synchronization overhead of n-to-n collective operations.

A good estimate of the synchronization overhead incurred during the execution of an n-to-
n operation is the execution time of the operation until the last participant has joined in.
Figure 3.12 shows the synchronization times for individualparticipants. The vertical line
indicates the point in time when the last participant has started to execute the operation.
Everything left of the line is estimated to be overhead. In terms of the compound-event
specification, the total time wasted as a result of synchronization can be conveniently writ-
ten as:

wasted =
∑

e∈E2

max(E2.time) − e.time

◦

3.8.2 OpenMP

In particular, OpenMP-related performance properties based on waiting times resulting
from barrier or lock synchronization can be readily handledusing the compound-event
method.

Example 3.5 (Unbalanced Barrier). Similar to MPI applications, in OpenMP applica-
tions the threads of a team may reach a barrier instance at different points in time and thus
introduce undesirable synchronization overhead. As mentioned earlier, the notion of col-
lectively executed operations as incorporated in the modelapplies to bothMPI and OpenMP

in that it considers an instance of such an operation as a set of single region instances con-
nected by constraints concerning the order of occurrence and the number of participating
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locations. In both cases, a simple function delivers the setof Exit events belonging to a
“collective” operation instance that has just been completed. In the case ofMPI it was
mpicoll(), in the case of OpenMP it wasompcoll(). However, OpenMP provides no way
of identifying the region type solely based on the region name, so as opposed toMPI, the
compound events for OpenMP must rely on theregtype() function. This leads to a root
predicate slightly different from Example 3.4:

type(root) = OMPCExit ∧
ompcoll(root) 6= ∅ ∧
regtype(root.reg) = OpenMP Barrier

The rest of the compound event looks exactly like Example 3.4and, therefore, it is not
shown here. Detecting unbalanced OpenMP barriers may allow conclusions to be drawn
about the efficiency of, for example, scheduling strategiesapplied in a parallel loop.

◦
Example 3.6 (Lock Competition).This performance property deals with the situation that
occurs when one thread tries to acquire a lock that is in the possession of another thread.
That is, the thread trying to acquire the lock invokesomp set lock, before the current owner
releases the lock usingomp unsetlock. Figure 3.13 illustrates this behavior in a time-line
diagram.
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Figure 3.13: Waiting for an OpenMP lock.

The compound event describing this performance property consists of three single-event
fractions{{root}, {r1}, {e1}}, which denote the moment of lock acquisition, the mo-
ment of the preceding lock release, and the moment of entering the OpenMP function
omp set lock, respectively. The root condition requires the root event to be of the type
Alock:

type(root) = Alock

By following the pointer attributes emanating from the rootevent, it is easy to locate the
remaining constituents, as is shown in the figure. Sinceroot is the acquisition immediately
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after it has been released by eventr1, root.syncptr points tor1. Moreover,root.enterptr
points toe1 because it is theEnter event of the enclosing region instance. However, a
complete characterization of this situation also imposes constraints on the temporal order
of the constituents. That is to say, to be classified as inefficient behaviore1 is required to
take place prior tor1 because otherwise the lock would already be available to thread B. It
follows the formal compound-event specification:

r1 := root.syncptr

e1 :=

{
root.enterptr if root.enterptr.time < r1.time

fail else

The time lost due to this situation can be obtained by subtracting the time stamp ofe1 from
that ofr1. In addition, the specification allows the location of thread A (= r1.loc), which
was the owner of the lock while thread B (= root.loc) was trying to acquire it, to be exactly
determined and thus gives a better insight into the circumstances of the inefficient behavior
considered here.

◦

3.8.3 Call Paths

As mentioned in Section 3.6.3, it is useful to know in which call path the program is be-
ing executed when a compound event occurs. One way to obtain call path information
is to simply ask for the inherited stack of a constituent event and to extract the region
and call-site attributes. The drawback of this method is that it must be repeated for every
compound-event instance. To avoid this, a performance toolcould take advantage of the
cnodeptr attribute introduced in Section 3.6.3. Since thecnodeptr encodes the call path
associated with anEnterevent by pointing to the call-path representative, the call-path ex-
traction needs to be done only once for each representative.So the call-path extraction can
be easily separated from determining the call path of a compound-event instance. The lat-
ter is simply done by remembering thecnodeptr of one or more characteristic constituents
or their correspondingEnterevents, which are reachable viaenterptr.

This can be exemplified using theLate Sendercompound event from Example 3.1. The
fraction of execution time that is wasted occurs during theMPI Recvinstance, whoseEnter

event ise1. It follows thatp = e1.cnodeptr encodes the corresponding call path, which
can be obtained by querying
p.loc(p). The benefit of this method is that this needs only
to be done once for all compound events whose call path is represented byp. Note that a
compound event may also be associated with multiple call paths.
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3.8.4 Compound-Event Instantiation and Constraints

The examples presented in the previous subsections reveal an interesting property of the
description method used here. The constituent definitions of a compound event can be
divided into two parts. The first part is responsible for locating, i.e., instantiating, the
constituents of the compound event. The second part places additional constraints on the
constituents that are essential for the performance property they describe. These consider-
ations also apply to the root predicate. The root predicate can be divided into a condition
requiring a certain type and optional constraints if necessary.

Writing the constraint part separately allows a clearer distinction among different concerns
and improves the readability of the specification. Also, reuse of different specification parts
might become easier. For example, Example 3.2 might be rewritten like this:

Root Type
Receive

Instantiation
s1 := root.sendptr
e1 := root.enterptr
e2 := s1.enterptr

Constraint
root.enterptr.reg = MPI Recv ∧
s1.enterptr.reg = MPI Send ∧
e1.time < e2.time ∧
e1 ∈ � s1.loc(e2)

The separation of instantiation and constraints will be used for integrating compound
events into theASL specification language in Section 3.9.

3.9 Compound Events in ASL

The APART Specification LanguageASL [21] developed by theAPART working group on
Automatic Performance Analysis: Resources and Toolsis a novel approach to the for-
malization of performance properties and the associated performance-related data.ASL

provides a formal notation for defining performance properties related to different pro-
gramming models. By providing a general framework for the specification of performance
propertiesASL both encourages the collection of a multitude of different performance prop-
erties among users and tool builders and also provides a structure that can work as a basis
for performance-tool design.
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ASL allows performance-related data items to be referenced by means of an object-oriented
specification model.ASL distinguishes between static data known at compile time (e.g.,
information on source-code entities) and dynamic data generated at run time (e.g.,CPU-
time summaries). In theASL terminology, a performance property represents one aspect
of performance behavior. To test whether such a property is present in an application,
an associated condition must be evaluated based on the current performance data. The
confidence of a property specifies the reliability of the testcondition. If the condition is
evaluated as true, the severity of a property indicates its relative importance with respect to
other properties. Performance properties are specified inASL using thepropertyconstruct.
Figure 3.14 shows the usage of the property construct to represent the overhead associated
with barrier synchronization.

PROPERTY synchronization_costs (Region r,
Experiment e,
Region rank_basis)

{
LET
float barrier_time = summary(r,e).sums.sync_time;

IN
CONDITION: barrier_time > 0;
CONFIDENCE: 1;
SEVERITY: barrier_time/duration(rank_basis,e)

}

Figure 3.14: Usage of theASL property construct.

The three parameters are the regionr the property refers to, the experimente, which de-
livers the actual performance data, and the regionrank basis, whose duration is the
yardstick to which the overhead in regionr is compared. TheLET clause assigns the
synchronization overhead to a local variable by accessing the object-oriented performance
data of regionr in experimente. TheCONDITION clause requires this overhead to be
greater than zero, which is a reliable criterion, as indicated by theCONFIDENCE clause.
Finally, the severity is defined in theSEVERITY clause as the fraction of the synchroniza-
tion overhead compared to the duration of the rank basis.

Unfortunately, the initialASL data model, as specified in [22], mainly concentrates on pro-
filing data, i.e. summary information, and does not take advantage of the more detailed
information contained in event traces. The fine-grained view of the execution behavior
provided by event traces can be used to identify hidden idle times, to detect program-
ming errors, or to trace back performance problems to source-code entities in a way not
supported by profiling data. In particular, the notion of compound events indicating the
existence of performance properties is not part of the initial ASL specification. But the very
general design ofASL permits the easy integration of this approach into the language and
data model, thereby requiring only minor extensions which are presented in the following
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subsections. The extensions, which are reflected in the revisedASL version [21], can be
divided into three parts. The first part deals with theASL syntax, the second part describes
how to specify abstractions, such as state sequences and pointer attributes, using theASL

specification model. The third part explains how to integrate the new language constructs
with existing ones. Finally, a small example illustrates their effective usage.

3.9.1 Language Extensions

Expression Syntax

To be able to express state-transition operators, conditional expressions are required. For
this reason, the grammar symbolexpr is extended by adding a further alternative. In ad-
dition, a means to create a set from a list of single elements is provided. The empty set is
created by substituting an empty list for the symbolreference-list. Finally, theNULL literal
is introduced to indicate a void reference. The required grammar extensions are listed in
Figure 3.153.

expr is [. . . ]
or cond-expr

cond-expr is if-part elif-part ∗ [else-part]
if-part is IF ’(’ bool-expr’)’ expr
elif-part is ELIF ’(’ bool-expr’)’ expr
else-part is ELSE expr

set-expr is [. . . ]
or ’{’ reference-list’}’

reference is [. . . ]
or NULL

Figure 3.15:ASL expression-syntax extensions.

Compound-Event Specification

Compound events are specified inASL using a new language constructpattern. Its name is
motivated by thinking of compound events as event patterns.Its syntax is defined in Figure
3.16. SinceASL is intended to specify compound events rather than to implement efficient

3In the figure[. . .] is used as an abbreviation for the unchanged parts of the production rules as defined
in [22]
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matching algorithms, thepatternconstruct is designed according to the remarks in Section
3.8.4.

pattern is PATTERN p-name’(’ arg-list ’)’ ’ {’
[LET

def∗
IN ]

p-roottype
p-instantiation
p-constraint
p-export

’};’

arg is type ident
p-roottype is ROOTTYPE ’:’ ident ’;’
p-instantiation is INSTANTIATION ’:’ const-def∗
p-constraint is CONSTRAINT ’:’ bool-expr
p-export is EXPORT [m-name]’:’ const-def∗

Figure 3.16:ASL pattern-specification syntax.

It is possible to parameterize compound-event specifications by declaring formal parame-
ters in thearg-list. These parameters, as well as the local definitions from the optionalLET
clause, can be used in the subsequent parts of the compound-event specification.

TheROOTTYPE clause contains the type of the root event. If it is necessaryto allow the
root event to have multiple types, a common base type can be used here. The compound-
event fractions are defined in theINSTANTIATION clause as constants. Note that frac-
tions consisting of more than one element have to be defined using a set type. It is possible
to use conditional expressions here if a correct instantiation only can be guaranteed by
evaluating a condition. If an instantiation step fails, theexpression used in the constant
definition should evaluate toNULL. A condition representing additional compound-event
properties that are not needed for instantiation can be placed in theCONSTRAINT clause.

The dual use of the instantiation and the constraint clause therefore provides the opportu-
nity to separate conditions necessary for locating the compound-event’s constituents from
those that only represent an additional characterization which is not needed to locate any
constituents. Note that this separation simplifies the partial reuse of compound-event spec-
ifications.

The EXPORT clause defines attributes whose values are computed from thecompound-
event constituents. The attributes can be accessed throughmatch objectsof the pattern.
Match objects represent compound-event instances and provide a way to access character-
istic attributes of single instances. So the export clause implicitly defines a class to which
the match objects will belong and which defines those attributes. If necessary the class can
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be given a namem-name.

The root event as well as the complete event trace can be referenced in a compound-event
definition by the two keywordsROOT andTRACE. In a potential implementation these
keywords will be bound to the current root event and the eventtrace being investigated by
the search algorithm. The pattern construct is a useful instrument to increase the property
construct’s expressiveness, as will be shown later.

3.9.2 Event Types and Abstractions in ASL

TheASL specification model allows the definition of classes and functions. The integration
of pattern-based performance properties requires the definition of new classes to represent
event types and new functions to represent abstractions, such as state sequences and pointer
attributes. It is easy to specify a basic event model as a collection of ASL classes. As
opposed to the basic event model, state sequences as well as pointer attributes need to
be defined as functions because they are calculated from other events. However, doing
this requires a way of representing the order of events in a trace. For this reason, another
intrinsic ASL function is introduced that maps an event to its predecessorwithin the event
trace it belongs to:

Event PRED(Event e);

This function does not have to be defined explicitly inASL, since it is defined implicitly by
the event order produced by common instrumentation systems. Using the new expression
syntax it is easy to translate all previously defined state sequences and pointer attributes
into ASL. Figure 3.17 gives an example of how to define a state sequence(region stack) in
ASL. Figure 3.18 shows how to define a pointer attribute (enterptr) in ASL. The keyword
UNIQUE is used to uniquely select one element from a set. This is possible since the
definition forces the set to have exactly one element.

The other abstraction can be defined in a similar way. The purpose of these examples is
to show that theASL language constructs provide the capability to express the abstractions
needed for event-model enhancement.

3.9.3 Pattern Matches

The ASL pattern construct is useful to specify two things. First, itspecifies a compound
event, that is, a set of events being connected by some relationships and fulfilling some
constraints. This first aspect is collectively expressed bythe root-type clause, the instan-
tiation clause, and the constraint clause. Second, the pattern specifies a classm-nameof
match objects, which are computed from compound-event instances and used to represent
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setof Enter Rs(Event e, Process p) =

IF (e == NULL)
{}

ELIF (typeof(e) == Enter AND e.process_id == p)
Rs(PRED(e), p) + { e }

ELIF (typeof(e) == Exit AND e.process_id == p)
Rs(PRED(e), p) - { f IN Rs(PRED(e), p) SUCH THAT

NEXISTS g IN Rs(PRED(e), p)
SUCH THAT g.timestamp > f.timestamp }

ELSE
Rs(PRED(e), p);

Figure 3.17: TheRs() function returning the region stack of a process.

Enter enterptr(Event e) =

IF (Rs(PRED(e), p) == NULL)
NULL

ELSE
UNIQUE({

f IN Rs(PRED(e), e.process_id) SUCH THAT
NEXISTS g IN Rs(PRED(e), e.process_id)

SUCH THAT g.timestamp > f.timestamp
});

Figure 3.18: Theenterptr() function returning theenterptrattribute.
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performance-relevant metrics, such as idle times. This second aspect is expressed by the
export clause.

This proposal defines an intrinsicASL function to obtain the match objects computed from
all compound-event instances occurring in an event trace:

setof m-name
PATTERN MATCHES( p-name( arg-list ), setof Event trace);

The function takes two arguments. The first argument is anASL pattern provided with its
own argument list according to its definition. The second argument is the event trace to be
analyzed, which is represented by a set of events. When the function is invoked theTRACE
keyword mentioned in the preceding section is bound to this set. The function returns the
set of match objects corresponding to all compound-event instances according to theASL

pattern.

Note that defining more than one pattern will lead to an overloaded
PATTERN MATCHES() function whose return type depends on the first argument.
This is a consequence of the flexibility introduced by the export clause. Another way
would be to restrict pattern definitions to a fixed set of exported attributes. But this would
also limit the usefulness of patterns in property definitions.

3.9.4 Example: Late Sender in ASL

This section contains an example of utilizing theASL pattern construct to specify theLate
Sendercompound event described in Example 3.1. TheASL specification of this compound
event is shown in Figure 3.19. It consists of four fractionsROOT, s1, e1, ande2, each
containing only a single event. The root event or fraction isthe event indicating the message
arrival (i.e., an event of typeReceive), which is expressed by the root-type clause.

The other three events are the event of sending the message (s1), the event of entering the
MPI Sendregion (e2), and the event of entering theMPI Recvregion (e1). They are defined
in the instantiation clause using pointer attributes (see also Example 3.1).

The first subproposition of the conjunction in the constraint clause requires the root event
to occur when the process of the root event is being executed in regionr. This is ex-
pressed by using the region stackRs (Figure 3.17). Regionr is supplied as a parameter
of the pattern. Now the pattern is valid only forLate Senderinstances occurring during
execution of regionr. The next two subpropositions require the region instancesinvolved
to beMPI RecvandMPI Send. The last subproposition describes the necessary temporal
displacement between the two function calls. The export clause makes this displacement
accessible through an attributeidle time.
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PATTERN LateSender(Region r)
{
ROOTTYPE: Receive;

INSTANTIATION:
Send s1 = sendptr(ROOT);
Enter e1 = enterptr(ROOT);
Enter e2 = enterptr(s1);

CONSTRAINT:
EXISTS e IN Rs(ROOT, ROOT.process_id)

SUCH THAT e.region == r AND
enterptr(ROOT).region == MPI_Recv AND
enterptr(s1).region == MPI_Send AND
e2.timestamp > e1.timestamp;

EXPORT:
float idle_time = e2.timestamp - e1.timestamp;

}

Figure 3.19:Late Senderpattern specification inASL.

PROPERTY late_sender(Region r,
Experiment e,
Region rank_basis)

{
LET
float idle_time = SUM m.idle_time

WHERE m IN PATTERN_MATCHES(LateSender(r), e.trace);
IN
CONDITION: idle_time>0;
CONFIDENCE: 1;
SEVERITY: idle_time/duration(rank_basis, e);

}

Figure 3.20:Late Senderproperty using a pattern.

3.9.5 Using Patterns in Property Definitions

The purpose of patterns is to make the very detailed information contained in event traces
available to property definitions. To meet that goal, alate sender property is defined
in Figure 3.20 using the pattern from Figure 3.19.

This property refers to a regionr that createsLate Senderinstances during its execution.
The confidence is 1, since the criterion used here is safe. Theseverity corresponds to the
time lost by the sum of allLate Senderinstances. The time lost by individualLate Sender
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instances is exported by theidle time attribute of the pattern.

Event traces provide a very fine-grained view of the performance behavior of a parallel
application. Based on this view, performance properties that cannot be represented by
profiling data can now be specified in terms of compound events. For this reason,ASL

has been equipped with the pattern construct, which allows the specification of complex
performance properties by means of event traces.

3.10 Summary

The specification of compound events based on event-model enhancement provides a sys-
tematic approach to locating inefficiency situations of parallel applications in event traces.
The central idea of model enhancement is to combine single events to abstractions that
represent dynamic program entities, such as region stacks or messages. The strength of
this approach lies in an understandable characterization of performance behavior using the
vocabulary of the underlying programming model, which is represented by the abstractions
defined during model enhancement.

The abstractions include state sequences, which representaspects of a program’s execution
state as sets of events, and pointer attributes, which represent relationships between single
events as pairs of related events. It has been shown that model enhancement provides a
suitable means to describe complex situations of inefficient behavior inMPI and OpenMP

applications. Also, it has been shown that it is even possible to combine the enhanced
models for the two programming models into a hybrid model that is able to deal with the
concurrent usage ofMPI and OpenMP. The next chapter describes the design of an auto-
matic performance tool according to the concept of compound-event specification based
on event-model enhancement.



Chapter 4

Analysis of Performance Behavior

This chapter presents the design of an automatic performance toolEXPERT(Extensible Per-
formance Tool) based on compound-event detection in event traces. After a brief outline of
EXPERT’s overall architecture, the chapter starts with a discussion of instrumentation and
event-trace generation. Next, the analysis process is introduced as a transformation of trace
data into a property-oriented performance space. After that, it is shown how a separation of
compound-event specification from the actual analysis process leads to a modular and ex-
tensible tool architecture. A method of pinpointing performance problems and bottlenecks
through visualization of that space is then presented, followed by a detailed description of
the performance properties supported so far. Finally, the chapter discusses limitations of
the current prototype and concludes with some ideas on further improvements.

4.1 Performance Behavior of Coupled SMPs

Combining multipleSMPs into one parallel computer offers the opportunity to buildscal-
able high-performance architectures from standard servercomponents, which need not be
designed specifically for the scientific-computing market.However, this more economic
way of producing high-performance computers comes at the price of a complex hierarchi-
cal architecture consisting of multiple shared-memory nodes distributed across an inter-
connection network.

Since the architecture exhibits a mix of distributed and shared memory, there are several
possible ways of using such a machine. The traditional mapping of programming models
and hardware architectures suggests message-passing and shared-memory programming
as the models of choice. Most important among those areMPI for message-passing and
OpenMP for shared-memory applications. Indeed, one approach to exploit the hybrid hard-
ware design is the concurrent usage ofMPI and OpenMP in the same application.
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However, as a result of the increased complexity both in hard- and software, performance
behavior tends to be more complex because communication among different control flows
becomes more intricate. The increase in behavioral complexity creates a need for advanced
performance tools that are custom-made to this class of computing environments. In par-
ticular, automatic tools are desired in view of the large amount of performance data often
produced on such machines and the need to present performance results on a high level of
abstraction to allow easy identification of performance problems.

4.2 Overall Architecture

This section contains a description of the different components of the EXPERT

performance-analysis environment and explains how they are related to each other. The
complete environment is depicted in Figure 4.1. The different tools are represented as
boxes with rounded corners and their inputs and outputs are represented as sheets of paper
with the upper-right corner turned down. The arrows illustrate the whole performance-
analysis process from instrumentation to result presentation.

The EXPERT analysis process is composed of two parts: a semi-automaticmulti-level in-
strumentation of the user application followed by an automatic analysis of the generated
performance data. The first subprocess is called semi-automatic because it requires the user
to slightly modify the make file. To begin the process, the user supplies the application’s
source code, written in either C, C++, or Fortran, toOPARI [57, 58], which performs au-
tomatic instrumentation of OpenMP constructs and redirection of OpenMP-library calls to
instrumented wrapper functions on the source-code level. Instrumentation of user functions
is done either on the source-code level usingTAU [69, 70] or using a compiler-supplied pro-
filing interface. Instrumentation forMPI events is accomplished with thePMPI [52] wrapper
library, which generatesMPI-specific events by intercepting calls toMPI functions. All the
MPI, OpenMP, and user-function instrumentations call theEPILOG run-time library, which
provides mechanisms for event-record buffering and trace-file creation. At the end of the
instrumentation process the user has a fully instrumented executable.

Running this executable generates a trace file in theEPILOG format. After program ter-
mination, the trace file is fed into theEXPERT analyzer. The analyzer does not operate on
the raw trace file, instead the analysis is carried out in terms of the enhanced event model
defined in Chapter 3. For this purpose,EXPERT usesEARL [75], which is responsible for
mapping the raw trace file onto the enhanced event model.EARL provides a high-level
API to event traces and offers random access to events includingpointer attributes and
states from state sequences. Thus, the calculation of statesequences and pointer attributes
is done byEARL. After analysis has been completed, the analyzer generatesan analy-
sis report, which serves as input for theEXPERT presenter, the component responsible for
analysis-result presentation.
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Figure 4.1:EXPERT overall architecture.

Currently, the software necessary to generate event traceshas been successfully installed
on two parallel computers withSMP nodes: thePC-basedZAMpano [27] and theHITACHI

SR8000-F1 [49]. Instrumentation is done onZAMpano and on theSR8000-F1 with the
unpublished profiling interface of thePGI compiler [64] and of the proprietaryHITACHI

compiler [37], respectively. The analysis components ofEXPERT run on Linux.

4.3 Event-Trace Generation

The analysis process relies on event traces as performance-data source because event traces
preserve the temporal and spatial relationships among individual events. These relation-
ships are necessary to detect the presence of many interesting performance properties in
the target application. Event traces as generated by the instrumented application represent
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the program execution on the level of the basic event model, as defined in Chapter 3.

4.3.1 Data Format

The event traces generated in this environment are compliant with the portableEPILOG

(Event Processing, Investigating, and Logging) binary trace-data format. TheEPILOG for-
mat was designed as part of this thesis to represent the basicevent model from Section 3.6,
that is all event types from the hybrid model but without any pointer attributes.

TheEPILOG format is suitable to represent the executions ofMPI, OpenMP, or hybrid par-
allel applications distributed across one or more (possibly large) coupledSMP systems.
In addition to coupledSMPs, target systems also can be meta-computing environments as
well as more traditional non-coupled or non-SMP systems. It maps events onto their loca-
tion within the hierarchical hardware as well as onto their process and thread of execution,
that is, an event location is described by a tuple (machine,SMP node, process, thread), as
required by the model.

Furthermore,EPILOG supports storage of all necessary source-code informationin terms
of files, regions, and call sites. In addition to a name and a source-code location, which
consists of a file name and a range of lines in that file, source-code regions can be distin-
guished by a region-type attribute that indicates whether aregion is a function, a loop, or
an OpenMP construct, and if so, which one. Also, eachEnterevent is able to carry call-site
information including a file and a line from where the region was entered.

Although not used in the current prototype ofEXPERT, theEPILOG format offers the option
of recording hardware performance-counter values for eachEnterandExit event. The pre-
defined semantics of possible performance-counters correspond to the counters provided
by PCL [9] (Performance Counter Library). The counters covered byPCL comprise a broad
range of common performance counters that provide information on events referring to the
memory hierarchy, to instructions, to the status of functional units, and to ratios computed
from a combination of multiple counters.

4.3.2 Instrumentation

The instrumentation of a program occurs on multiple levels.The source-to-source transla-
tor OPARI performs OpenMP directive andAPI call transformations on the source-code level
to expose OpenMP parallel execution to theEPILOG run-time system.OPARI both inserts
calls to the run-time system before and after directives andredirectsAPI calls to wrapper
functions generating events related to lock synchronization andAPI entry and exit.

OPARI supports thePOMP [58] monitoring interface that can be implemented by different
performance tools to support a variety of performance measurement tasks for OpenMP.
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The POMP interface defines the points in the control flow of an OpenMP application that
trigger aPOMP interface call. The implementation of that interface must be provided by
the respective performance tool itself. ThePOMP library included inEXPERT was the first
implementation of thePOMP monitoring interface. To be able to trace OpenMP applica-
tions, the implementation ofEPILOG is thread safe, a necessary precondition not satisfied
in many traditional tools.

Instrumentation targeting the interception of user functions occurs either on the source-
code level usingTAU or during compilation. The compiler, which must provide a profiling
interface defining functions called upon function entry andexit as well as program start
and termination, inserts calls to that interface into the object code. The interface is imple-
mented by theEPILOG run-time system. However, currently neitherTAU nor thePGI and
HITACHI compilers support efficient call-site instrumentation, and hence theEnter events
carry no call-site information. For this reason, a call pathcomputed byEXPERT may actu-
ally represent a set of call paths differing only in call sites (e.g., line number of a function
call).

Finally, the last level of instrumentation is performed during linkage of different libraries,
which are actually combined into one single library. ThePMPI wrapper library, which
is based on theMPI standard profiling interface, interceptsMPI calls and redirects them
to PMPI functions, while generatingMPI-specific events before and after calling thePMPI

function. As already mentioned, thePOMP run-time system and wrapper library provides
an implementation of thePOMP interface and transforms calls inserted byOPARI into calls
of theEPILOG run-time system to generate OpenMP-specific events. TheEPILOG run-time
system itself is responsible for event-record creation, buffering, merging of local traces,
and post-mortem synchronization of local time stamps, as described in Section 4.3.3.

4.3.3 Clock Synchronization

Not all parallel computers withSMP nodes provide hardware clock synchronization among
different SMP nodes. In these cases, their local clocks may vary in offset and drift at a
given moment. TheEPILOG run-time system addresses this with software synchronization
to ensure the correct precedence order of distributed events. This is especially important in
view of point-to-point communication to preserve the correct order of messages.

Instead of adjusting the local clocks during run time,EPILOG performs post-mortem syn-
chronization of local time stamps when merging local event traces into a single global
event trace. For this reason,EPILOG conducts run-time offset measurements based on
the remote clock reading technique [15] once at program start and once at program end.
Since the measurement module needs to callMPI functions, the measurements are taken
immediately afterMPI has been initialized and immediately beforeMPI is finalized. The
synchronization occurs in an asymmetric fashion in that onelocal master clock provides
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the time for the remaining local slave clocks. Each slave sends a request to the master at
a times1, the master responds to the request by sending its current local timem, and the
slave receives the response at a times2. The slave time corresponding to the master time
m is estimated as:

s := s1 + (s2 − s1)/2

The offset is computed as the differencem − s. To minimize the effect of asymmetric
message delays,EPILOG applies a statistical approach that executes a series of message
exchanges and takes that one with the minimum differences2 − s1, which is assumed
to have a minimal and therefore symmetric delay. After program termination, each slave
has two pairs(ss, os) and (se, oe) which contain the local time together with the offset
to the corresponding master time once for program start and once for program end. The
post-mortem synchronization algorithm assumes that all clocks have a constant drift and
that they can be described in terms of a linear function basedon an initial offset and a
constant decline. Based on this model each slave time stamp can be easily mapped onto
the corresponding master time:

m(s) := s +
(oe − os)

(se − ss)
∗ (s − ss) + os

To circumvent the effects of externalNTP [56] synchronization of local system clocks, the
measurements can refer to the cycle counter instead of the system clock, whose drift rate
may be adjusted at regular intervals byNTP.

Of course, the assumption that the local clocks are paced with a different but constant drift
is only an inaccurate approximation, since the drift may change as a result of temperature
variation. Experiments [76] onZAMpano suggest that the accuracy that can be achieved in
this way allows the calculation of the correct precedence ofmessage events for a program
run time of at least a few minutes, that is, during this periodthe deviation lies below the
network latency of15µs. While this proved to be sufficient for the applications presented
in Chapter 5, in the absence of a global hardware clock a production tool should rely on
alternative software solutions, such as the controlled logical clock [65].

4.4 Analysis Process

The actual trace analysis is done by theEXPERT analyzer. The analysis process is based
on the notion of performance properties. A performance property characterizes one aspect
of the performance behavior of a program and can be checked bya set of conditions. For
every performance property aseveritymeasure is provided, whose magnitude specifies the
influence of a property on the performance behavior in relation to other properties. In ad-
dition, the conditions used to prove the existence of a performance property are associated
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with a confidencevalue indicating their reliability. Note that a performance property does
not necessarily denote negative, that is, inefficient behavior.

In the context ofEXPERT, the presence of a performance property is checked by looking for
occurrences of a compound event. The severity is the inefficiency-time fraction associated
with that compound event, and the confidence is the reliability of the compound-event
specification to match the desired behavior. InEXPERT, the confidence is used to inform
the user about the reliability of the analysis process with respect to that property. It is given
as a string value (e.g.,maxor medium).

The analysis process transforms low-level trace data into amultidimensional performance
space consisting of three dimensions: performance property, call path, and location. Per-
formance properties are specified as compound events in terms of the enhanced hybrid
event model from Section 3.6. Instead of accessing the eventtrace directly, theEXPERT

analyzer usesEARL to map the event trace onto the enhanced model. The analysis pro-
cess is then executed with respect to the enhanced-model view. EXPERT determines for
each performance property the time spent on a behavior related to that property.EXPERT

measures the time separately for each location and call pathand inserts the results into a
three-dimensional data structure representing the performance space.

The user controls the analyzer, which is implemented in Python [7], either from the com-
mand line or using aGUI (Graphical User Interface) (Figure 4.2). TheGUI allows the
selection of particular performance properties for analysis while ignoring the rest.

Figure 4.2:GUI of theEXPERT analyzer.

4.4.1 Representation of Performance Behavior

Performance behavior is represented in a three-dimensional performance space with the
dimensions of performance property, call path, and location. The first dimension describes



88 CHAPTER 4. ANALYSIS OF PERFORMANCE BEHAVIOR

the kind of behavior. The second dimension describes both its source-code location and the
execution phase during which it occurs. Finally, the third dimension gives information on
the distribution of performance losses across different processes or threads, which allows
conclusions to be drawn, for example, on the workload balance.

The performance space only describes the structure in whichperformance behavior is rep-
resented. The actual performance behavior is a mapping thatmaps each point (property,
call path, location) of that space onto a value indicating the extent to which a performance
property is present with respect to a call path and a location. This mapping is calledsever-
ity and expresses this extent in terms of the time spent on a particular property while the
program was running in a particular call path and at a particular location.

4.4.2 Interval Sets

The run-time events of a parallel application occur on multiple time lines - one for each
control flow. Hence,EXPERT describes the severity of a particular performance behavior
in terms of wall-clock interval sets that may be distributedacross different time lines.

However, as already mentioned, the term location denotes a control flow and not aCPU. To
be able to compare wall-clock intervals across different locations in a reasonable fashion,
EXPERT requires that different locations never run on the sameCPU simultaneously, that is,
processes or threads running on the sameSMP node do not share aCPU. This requirement
comes from thinking of a wall-clock interval used by one location as an interval of that
location’s resource usage, which should not overlap with another location’s usage of the
same resource. Therefore, all locations are regarded as being mapped to differentCPUs at
any time.

Since scheduling policies on most systems are aimed at balancing the work across different
CPUs, the requirement can be assumed to be approximately fulfilled if an application does
not run more threads thanCPUs reserved for that application, that is, an application owns
as manyCPUs as it runs different control flows (i.e., locations). A moreflexible solution
could be achieved in the future by integrating events related to CPU acquisition and release
to monitor theCPU usage more exactly.1 The time model applied byEXPERT is based on
the assumption of exclusiveCPU reservation, that is, the application exclusively owns all
CPUs from program start to program termination.

The severity mapping describes the performance behavior interms of time spent on a par-
ticular behavior. The range of the severity is called theCPU-reservation time.

Definition 4.1 (CPU-Reservation Time).The CPU-reservation timeA of an event trace
E = {e1, . . . , ene

} is the Cartesian product of the setL of locations used inE and the

1Instrumentation for these events may have to be placed in theoperating system.
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wall-clock interval from the very first to the very last eventof E.

A := [e1.time, ene
.time] × L

An element of theCPU-reservation time(t, l) ∈ A is a tuple consisting of a time and a
location. �

Figure 4.3 shows the different time lines for a hybridMPI/OpenMP application running
two processes with four threads each. The figure shows one time line per location. The
whole (spotted) rectangular area constitutes theCPU-reservation time. The dark-gray bars
indicate the times when code is executed, whereas the light-gray bars indicate idle slave
threads as a result of sequential execution. Note that the processes are launched at slightly
different times by the parallel environment.
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Figure 4.3: Time model ofEXPERT.

The severity of a particular performance behavior is described in terms of interval sets
spent on that behavior. Interval sets are sets of wall-clockintervals that may be associated
with different locations because a behavior may take place at more than one location.

Definition 4.2 (Simple Interval). A simple interval([t1, t2], l) ⊆ A is a closed interval of
A that includes only elements from one location:

([t1, t2], l) := {(t, l) ∈ A| t1 ≤ t ≤ t2}

�

Definition 4.3 (Non-Overlapping Simple Intervals). Two simple intervalss1, s2 ⊆ A are
non-overlapping, s1 ./ s2, if and only if the interior of their intersection is empty:

s1 ./ s2 ⇔
˙︷ ︸︸ ︷

s1 ∪ s2 = ∅

�
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A particular behavior may cover multiple simple intervals on different locations. For this
reason, the notion of aninterval setis introduced.

Definition 4.4 (Interval Set). An interval setD is the finite union of non-overlapping
simple intervalssi ⊆ A:

D =
⋃

i∈ID

si, ∀i, j ∈ ID : i 6= j ⇒ si ./ sj

ID denotes the index set of all member intervals.

�

Note that every union of simple intervals can be rewritten asa union of non-overlapping
simple intervals.

Definition 4.5 (Non-Overlapping Interval Sets).Two interval setsD1, D2 ⊆ A arenon-
overlapping, D1 ./ D2, if and only if the interior of their intersection is empty:

D1 ./ D2 ⇔
˙︷ ︸︸ ︷

D1 ∪ D2 = ∅

�

Definition 4.6 (Sum of Interval Sets).The sum of two interval setsD1, D2 ⊆ A is their
union:

D1 ⊕ D2 := D1 ∪ D2

�

Definition 4.7 (Difference of Interval Sets).The difference of two interval setsD1, D2 ⊆
A, D2 ⊆ D1, is the closure of their set difference:

D1 	 D2 := (D1 \ D2)

�

The user of a performance tool may wish to compare multiple interval sets and may there-
fore be interested in their size (i.e., their amount).

Definition 4.8 (Amount of a Simple Interval). Theamount|I| of a simple intervalI =
([t1, t2], l]) is the difference oft2 andt1:

|I| := t2 − t1

�
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Definition 4.9 (Amount of an Interval Set). Theamount|D| of an interval setD is the
sum of all of its member-interval amounts:

|D| :=
∑

i∈ID

|si|

�

Note that Definition 4.9 relies on the definition of interval sets as unions of non-overlapping
simple intervals. It follows that the amount of theCPU-reservation time is:

|A| = (ene
.time − e1.time) ∗ |L|

TheCPU-reservation timeA can be divided based on the dynamic call graph. Each call path
n (i.e., node in the call graph (3.5)) defines an interval set during which the program was
running exactly in that call path and not in a successor call path (i.e.,cpath(n)◦π). To also
extend that mapping to the time during which OpenMP slave threads remained idle as a con-
sequence of sequential execution, an interval([t1, t2], slave) of idle slave threads (empty
boxes in Figure 4.3) is associated with the same call path as the interval([t1, t2], master)
of the corresponding master thread (see the hatched box in Figure 4.3).

4.4.3 Performance Space

Performance behavior takes place in a property-oriented performance space. The perfor-
mance space provides a coordinate system in which performance behavior can be repre-
sented. It is called “property oriented” because it contains the performance property (i.e.,
the kind of behavior) as a separate dimension, which allows different behavior to be ac-
commodated in one representation.

Definition 4.10 (Performance Space).Let B be a set of performance properties,E an
event trace,L the respective set of locations (Definition 3.17), andN = N(E) := {e ∈
E| e.cnodeptr = e} the set of call paths (i.e., call-path representatives) visited by events
contained inE. Theperformance spaceP = P(B, E) is the Cartesian product:

P := B × N × L

�

The first two of the dimensions in the performance space are arranged in a tree hierarchy:
the performance properties in a hierarchy of general and more specific ones (Figure 4.8),
the call paths in a prefix hierarchy. In addition, the locations can be extended to form a
hierarchy similar to the property and call-path hierarchies. Each elementl ∈ L denotes a
single control flow (i.e., a thread) and, therefore, all locations reside on the same hierarchy
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level. However, each thread is associated with a process, anSMP node, and a machine (see
Definition 3.17 and Figure 4.4), which constitute groups of locations on different hierarchy
levels.

The current prototype ofEXPERT supports only tree hierarchies with a single root node.
That means there is exactly one root property, one root call path, and one root machine.
Also, each node in a hierarchy has a unique parent so that the hierarchies can be conve-
niently displayed using standard tree browsers. For this reason, in the following, the call
graph is referred to as the call tree. Support for multiple machines as part of a hetero-
geneous environment might be a useful extension in the future and is therefore already
integrated in the event-location model (Definition 3.17).

Definition 4.11 (Tree Hierarchy). A tree hierarchyon a setH is a binary relation< on
H that satisfies the following properties:

∀a ∈ H : a 6< a (4.1)

∀a, b ∈ H : a < b ⇒ b 6< a (4.2)

∀a, b, c ∈ H : a < b ∧ b < c ⇒ a < c (4.3)

∃r ∈ H : ∀a ∈ H : a 6= r ⇒ r < a (4.4)

∀a, b, c ∈ H : b < a ∧ c < a ⇒ b < c ∨
c < b ∨
c = b

(4.5)

Let s, p ∈ H:

root(H) := r

ischild(s, p) :=

{
true if p < s ∧ �a ∈ H : p < a ∧ a < s

false else

children(p) := {s ∈ H| ischild(s, p)}

�

Thus, a tree hierarchy< is a strict partial order (4.1 - 4.3) with one least elementr =
root(H) (4.4). In addition, each element has a unique path to the root, which implies that
the associated tree graph does not contain any cycles (4.5).

The set of performance properties is organized in a generalization-specialization hierarchy
(i.e., general< specific), which is depicted in Figure 4.8. The hierarchy hasbeen explicitly
established by specifying a parent for each of the performance properties except for the
root property. Since it seems natural that a more specific behavior only takes place when
a more general behavior takes place as well, the interval setassociated with the more
general behavior contains the interval set associated withthe more specific behavior as
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a subset. This relationship is a precondition for placementof a property as a child of
another property. Note that in general, however, the subsetrelationship would allow the
arrangement of properties in a fashion violating Condition(4.5).

Next, the set of call paths is organized in a prefix hierarchy.A call patha ∈ N is smaller
than a call pathd ∈ N (i.e.,a < d) if and only if a is a true prefix ofd:

a < d ⇔ cpath(a) ◦ (r1, c1) ◦ . . . ◦ (rn, cn) = cpath(d), n ≥ 1 (4.6)

In contrast to the latter two hierarchies, the location hierarchy exists only in an implicit
manner, since all locations represent threads and thus belong to the same level. The other
hierarchy levels (i.e., process,SMP node, and machine), as introduced in Definition 3.17,
can only be derived by aggregation. To make the location hierarchy explicit, the set of
locationsL can be extended to represent the whole hierarchy.

Definition 4.12 (Hierarchical Location). A hierarchical locationl̂ ∈ L̂ is either a plain
locationl ∈ L or it is an aggregate of plain locations.

L̂ = L ∪ (i.e., threads)
{(m, s, p) | ∃(m, s, p, t) ∈ L} ∪ (i.e., processes)
{(m, s) | ∃(m, s, p, t) ∈ L} ∪ (i.e., SMP nodes)
{(m) | ∃(m, s, p, t) ∈ L} ∪ (i.e., machine)

�

L̂ denotes the extended location set including the upper hierarchy levels, as depicted in
Figure 4.4. Each node in the hierarchy corresponds to one element ofL̂. The upper levels of
the hierarchy are aggregates of their children, they do not represent independent locations
of single control flows.

SinceEXPERT requires each hierarchy to have exactly one root element, the last part of
the union in Definition 4.12 contains exactly one element. A formal characterization of
the obvious tree hierarchy can, similar to call paths (4.6),be based on a prefix criterion.
After extending the set of locations, it seems natural to also extend the performance space
to cover the whole location hierarchy.

Definition 4.13 (Extended Performance Space).Let B be a set of performance proper-
ties,E an event trace,̂L the respective set of hierarchical locations (Definition 4.12), and
N = N(E) := {e ∈ E| e.cnodeptr = e} the set of call paths (i.e., call-path representa-
tives) visited by events contained inE. Theextended performance spaceP̂ = P̂(B, E) is
the Cartesian product:

P̂ := B × N × L̂

�
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Severity

The EXPERT analyzer represents the performance behavior contained inan event trace as
a mapping that maps each point in performance space onto an interval set within theCPU-
reservation time.

Definition 4.14 (Severity). The severityof an event traceE with respect to a set of per-
formance propertiesB is a mappingsev() that maps each point in the performance space
P = P(B, E) onto an interval set within theCPU-reservation timeA:

sev : P → 2A

(b, n, l) 7→ D

(b, n, l) is mapped onto the interval setD spent on behavior associated with propertyb
while the program was running in call pathn at locationl. D includes the time spent on
behavior associated with more specific properties as a subset, and does not include any
time that has been spent on call paths other thann:

∀b1, b2 ∈ B : b1 < b2 ⇒ sev(b2, n, l) ⊆ sev(b1, n1, l) (4.7)

∀n1, n2 ∈ N : n1 6= n2 ⇒ sev(b, n1, l) ./ sev(b, n2, l) (4.8)

Also, D contains only intervals occurring at locationl:

sev(b, n, l) ⊆ ([e1.time, ene
.time], l) (4.9)

�
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Condition (4.8) implies thatD, in particular, does not include any time that has been spent
on call paths reached fromn, that is, any call pathsm with n < m. Also, the interval set
associated with one point in the performance space containsonly simple intervals from the
same locationl. However, interval sets covering multiple locations will be discussed when
dealing with hierarchical locations.

Since the storage of interval sets covering a large number ofmember intervals has space
requirements that come close to those of event traces,EXPERT computes only the amounts
of these interval sets and not the interval sets themselves.However, as will be shown later,
the restriction to amounts imposes constraints on the shapeof these intervals.

Definition 4.15 (Extended Severity).Theextended severitŷsev() of an event traceE with
respect to a set of performance propertiesB is the original severity function (i.e.,sev())
with an extended domain covering the extended performance spaceP̂ = P̂(B, E):

ŝev : P̂ → 2A

(b, n, l̂) 7→

{
sev(b, n, l̂) if l̂ ∈ L

∅ else

�

Similar to the call-path hierarchy, the severity of an aggregate location is defined without
covering any child nodes in the location hierarchy. However, since a location aggregate
naturally does not have any severity not coming from any of its children, the extended
severity assigns the empty set to all aggregates in the location hierarchy.

Inclusion and Exclusion

The extended severity function provides arguments withinclusivesemantics and arguments
with exclusivesemantics. That is, the severity either covers an argument including all its
children in the hierarchy or excluding all its children.

The property is interpreted using inclusive semantics (4.7), that is, the interval set asso-
ciated with a property contains the interval sets of all its specializations as a subset. As
opposed to properties, the call path and the location are interpreted using exclusive seman-
tics. The severity of a call pathn never includes a successor call pathm with n < m (4.8)
and the location only delivers a non-empty interval if it is not an aggregate (Definition
4.15).

However, the user who is aware of the hierarchical organization of the performance space
may wish to explore the severity of one hierarchy element in relation to other hierarchy
elements in a more flexible way. For example, the user may wishto know to what extent
the severity of a performance property is not contained in its specializations or may be
interested in the sum of the severity of all threads belonging to a given process.
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To answer these questions it is necessary to know the severity of a hierarchy element with
the semantics of choice. That is, the severity function should be able to deliver both the
inclusive and exclusive severity of a hierarchy element.

Definition 4.16 (Variable Severity). Thevariable severityŝev(x,y,z)() of an event traceE
with respect to a set of performance propertiesB is an extended severity mapping that in-
terprets itskth argument either with exclusive or inclusive semantics depending on whether
the tuple(x, y, z) carries aneor i in its kth position:

ŝev(x,y,z) : P̂ → 2A

(b, n, l) 7→ D

The variable severity is derived from the extended severity(Definition 4.15):

ŝev(e,y,z)(b, n, l) := ŝev(i,y,z)(b, n, l) 	
⊕

c∈children(b)

ŝev(i,y,z)(c, n, l) (4.10)

ŝev(i,y,z)(b, n, l) := ŝev(y,z)(b, n, l)

ŝev(e,z)(b, n, l) := ŝev(z)(b, n, l)

ŝev(i,z)(b, n, l) := ŝev(e,z)(b, n, l) ⊕
⊕

c∈children(n)

ŝev(i,z)(b, c, l) (4.11)

ŝev(e)(b, n, l) := ŝev(b, n, l)

ŝev(i)(b, n, l) := ŝev(e)(b, n, l) ⊕
⊕

c∈children(l)

ŝev(i)(b, n, c) (4.12)

�

Note that the variable severity supports the characterization of performance problems and
bottlenecks as subsets of the performance space by computing, for example, the severity of
subtrees in the call-path hierarchy.

As already mentioned, to circumvent the storage of highly dispersed interval sets,EXPERT

computes only|sev(P)|, extends it to|ŝev(P̂)|, and derives|ŝev(x,y,z)(P̂)| from it. How-
ever, computing|ŝevxyz(P̂)| requires computing the amount of interval-set expressions
based on the amount of the operands involved. Unfortunately, this is only possible if the
operands are non-overlapping in the case of an addition of interval sets or if the subtrahend
is a subset of the minuend in the case of a subtraction of interval sets. LetC, D ∈ 2A be
interval sets:

|C ⊕ D| = |C| + |D| ⇔ C ./ D

|C 	 D| = |C| − |D| ⇔ D ⊆ C
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For this reason, it is necessary to postulate that the interval sets to be added in Equation
(4.10), (4.11), and (4.12) are non-overlapping and that both operands of the interval-set
subtraction in Equation (4.10) are connected by a subset relationship. Letb be a perfor-
mance property,n a call path, andl a location:

∀b1, b2 ∈ children(b) : b1 6= b2 ⇒ ŝev(i,y,z)(b1, n, l) ./ ŝev(i,y,z)(b2, n, l) (4.13)

∀n1, n2 ∈ children(n) : n1 6= n2 ⇒ ŝev(i,z)(b, n1, l) ./ ŝev(i,z)(b, n2, l) (4.14)

∀l1, l2 ∈ children(l) : l1 6= l2 ⇒ ŝev(i)(b, n, l1) ./ ŝev(i)(b, n, l2) (4.15)

∀c ∈ children(b) : ŝev(i,y,z)(c, n, l) ⊆ ŝev(i,y,z)(b, n, l) (4.16)

Conditions (4.14) and (4.15) are trivially satisfied as a consequence of (4.8) and (4.9).
Similarly, Condition (4.16) follows from (4.7). Only Condition (4.13) must be ensured by
carefully defining the performance properties such that thechildren of a property always
have a non-overlapping severity. Note that this imposes a restriction on property coverage,
which may be subject to improvement in a future version ofEXPERT.

With Conditions (4.13 - 4.16), it is possible to compute|ŝev(x,y,z)(P̂))| solely based on
|ŝev(P))| and thus on|sev(P))|:

|ŝev(e,y,z)(b, n, l)| = |ŝev(i,y,z)(b, n, l)| −
∑

c∈children(b)

|ŝev(i,y,z)(c, n, l)|

|ŝev(i,y,z)(b, n, l)| = |ŝev(y,z)(b, n, l)|

|ŝev(e,z)(b, n, l)| = |ŝev(z)(b, n, l)|

|ŝev(i,z)(b, n, l)| = |ŝev(e,z)(b, n, l)| +
∑

c∈children(n)

|ŝev(i,z)(b, c, l)|

|ŝev(e)(b, n, l)| = |ŝev(b, n, l)|

|ŝev(i)(b, n, l)| = |ŝev(e)(b, n, l)| +
∑

c∈children(l)

|ŝev(i)(b, n, c)|

Summary

EXPERT represents the performance behavior as the mapping|ŝev(x,y,z)(P̂)| that maps a
point in the performance space defined by the property, call path, and location coordinates,
onto the amount of aCPU-reservation time interval set. The semantics of each coordinate
may be either inclusive or exclusive depending on what the user would like to know.
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The analysis process is an automatic transformation of an event trace into this representa-
tion and is performed in three steps. First, it computes the amount of the simple severity
(Definition 4.14), extends it to include hierarchical locations (Definition 4.15), and finally
adds inclusive and exclusive semantics for each coordinateof the performance space (Def-
inition 4.16). Note that the structure of the performance space also depends on both the
event trace and the set of performance properties, which is independent of the event trace,
but which may be changed or extended, as will be explained later.

E, B
(1)
−→ |sev(P))|

(2)
−→ |ŝev(P̂))|

(3)
−→ |ŝev(x,y,z)(P̂))|

Note that most of the values obtained as a result of step (3) need not be precomputed by
the analyzer. Instead, they can be computed on demand by the presenter.

4.4.4 EARL

EARL (Event Analysis and Recognition Language) is a class library 2 that offers a high-
level interface to anEPILOG event trace. The interface provides random access to all events
including the state sequences and pointer attributes defined in the enhanced event model
(except for the auxiliary ones). To give access to state sequences and pointer attributes,
EARL performs the calculations described in Chapter 3. In addition,EARL provides access
methods to obtain static information on the event trace, such as the number and kind of
event locations, and information on source-code entities,such as regions and files. Also, it
gives the user the ability to traverse the dynamic call tree.

The initial prototype ofEARL [75] developed earlier by the author provided only limited
assistance in the analysis ofMPI applications. The current version contained inEXPERT

is the result of a substantial redesign and many enhancements, including support forMPI

collective communication, OpenMP, hybrid programming, and a method of associating
events with the dynamic call path.

EARL is implemented as a C++ class, whose interface is embedded inthe Python [7] script-
ing language. The Python binding has been automatically generated usingSWIG [6]. The
class representing an event traceEventTrace allows random (read) access to events by
supplying the event position as a parameter. The event position of an eventei is just the
index i. The access methodevent() returns for each event a Python dictionary con-
sisting of a set of key-value pairs, where the keys representthe attribute names and the
values represent the attribute contents. Thus, the attribute value can be obtained using the
attribute name as the key (e.g.,e[loc]). Whereas pointer attributes present themselves to
the user the same way as regular attributes do, state sequences are implemented as methods
of EventTrace that take an event position as an argument.

2Since it provides a notation to specify compound events, it has been named a language.
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States sequences and pointer attributes provide events only as references expressed in terms
of event positions. Thus, the state-sequence methodstack() (i.e., the region stack) al-
ways returns a set of event positions and a pointer attributee[sendptr] always contains
a single event position as a value.

To provide efficient random access to events and, in particular, to support an efficient search
for compound events by sequentially traversing the event trace from the beginning to the
end, EARL uses two different buffer mechanisms: the history buffer and the bookmark
buffer. However, before delving into the details of both mechanisms, the general event-
access mechanism is explained.

When an eventei is accessed, all its abstractions, that is, the overall state~�i and all pointer
attributesei.ptr need to be computed. Recall that the working-set requirement from Section
3.3.3 requires that each state

�
i and each pointer attributeei.ptr can be computed solely

on the basis of the overall state~
�

i−1 and onei itself, that is, on the basis of the working
set∆i. From the inductive definition of state sequences and pointer attributes it follows
that to access an eventei, EARL needs to take an overall state~�k<i it knows and all events
from ek+1 to ei to compute the abstractions related toei. In the worst case,~

�
k = ~�0 =

{∅, . . . , ∅}, that is,EARL does not know any overall state prior toei, which requires reading
the event trace from the very beginning in order to computeei and its abstractions.

However, while traversing the trace file to compute all abstractions related toei, EARL

computes~
�

j for each eventej it reads on this way as a side effect. To utilize the work
done for one event access,EARL is able to remember~

�
j at regular intervals together with

the corresponding trace-file position and to store it in a buffer so that subsequent reading
can start at the closest~�j in the buffer. In analogy to a bookmark used to remember a page
in a book, this mechanism is called the bookmark buffer. Notethat the distance between
bookmarks, which can be changed by the user, must be chosen carefully due to potential
memory requirements.

Whereas the bookmark buffer accelerates subsequent event accesses by avoiding the ne-
cessity of reading the trace file from the beginning, expensive file accesses may still occur.
For this reason, the history buffer accelerates accesses toevents and abstractions within the
recent past (i.e., the history) of an event that has just beenaccessed. When the access to
eventei causes successive file accesses,EARL remembers a small window of events in con-
junction with the overall state prior to the first event in thewindow. That is, after reaching
ei, EARL keeps in its history buffer~

�
i−s−1 and{ei−s, . . . , ei}, wheres+1 is the size of the

window. Thus, it is possible to get all events including states and pointer attributes from
the history window without any file accesses.

To minimize the space requirements of both buffer mechanisms, EARL ensures that each
event is stored only once even in the case of two stored~� i and~�j with i 6= j andΓi∩Γj 6=
∅. Also, to save memory the dynamic call graph is implemented slightly different from
Section 3.6.3 in that anEventTrace object maintains only one call graph, which reflects
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the most recent event that has been read, whereas other states can be obtained for arbitrary
events. Recall that the state� representing the call graph never shrinks in size. In addition,
the call graph is internally represented as a tree, which decreases the time necessary to
locate the successor node of the current node.

4.4.5 Pattern Classes

The analyzer’s design follows a layered approach (Figure 4.5). Its architecture is based on
the idea of separating the analysis process from the performance-property specifications.
The analyzer operates on a set of property specifications, which adhere to a common inter-
face that is independent of the actual property semantics. In addition, the design establishes
a further layer by separating the property specifications from frequently used abstractions
(i.e., state sequences and pointer attributes), which are accessible through theEARL class
interface.

Analysis Process

Property Specifications

Abstractions

Figure 4.5: The layered design of theEXPERT analyzer.

Performance properties are specified as Python classes whose interface is defined in a com-
mon base classPattern (Figure 4.6). Hence, as long as the classes fulfill the common
interface, the analyzer is able to handle an arbitrary set ofpatterns. Pattern classes repre-
sent compound events to be matched against the event trace and are implemented using the
EARL language.

Theparent() method of thePattern base class is intended to express the hierarchi-
cal organization of performance properties in that all descendant implementations should
return their parent’s name in the hierarchy, which is not necessarily the parent in the inher-
itance hierarchy. Whereas the property hierarchy is used toexpress an inclusion relation-
ship with respect to the severity (4.7), the inheritance hierarchy is used to give all pattern
classes a uniform interface. Theconfidence() method should return the confidence
of the assumption made by a successful pattern match about the occurrence of a perfor-
mance property. The default confidence is maximum confidence. Note that the confidence
is always the same for a given pattern class and does not referto the characteristics of a spe-
cific match. Theseverity()method is invoked after the analysis has been finished and
should return the severity restricted to the property represented by that class, that is, a ma-
trix representing|sev(b, n, l)| for a variable call pathn ∈ N and a variable locationl ∈ L
while the propertyb is fixed. Finally, the base class includes a methodconfigure()
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class Pattern:

[...]

# return name of the parent property
def parent(self):

return None

# return the confidence
def confidence(self):

return ’max’

# return the severity matrix for this property
def severity(self):

return self._severity

# launch a configuration dialog
def configure(self, parent):

pass

Figure 4.6: Python definition of the base classPattern.

to launch a configuration dialog for the input of pattern-specific parameters prior to event-
trace analysis.

The analysis process follows an event-driven approach according to Algorithm 3.1. EX-
PERTwalks sequentially through the event trace and for each single event invokes call-back
methods of the pattern instances and supplies the event as anargument. A pattern can pro-
vide a different call-back method for each event type. Everytime EXPERT encounters an
event of typet, it invokes the call-back methods for typet of all pattern instances that
provide one for typet.

A pattern class looking for occurrences of a compound event will provide at least one call-
back method for the root event. Then it tries to instantiate that compound event starting
from the root event, which is supplied as an argument. Duringthis process the pattern in-
stance may follow links (i.e., pointer attributes) or investigate states from state sequences.
After completion of the analysis process, the analyzer knows |sev(b, n, l)| for all combina-
tions of a propertyb, a call pathn, and a locationl and writes it to a file, which is used as
input for theEXPERT presenter.

Note that a pattern class may provide more than one call-backmethod, which allows a
property implementation to be more flexible than is suggested by Definition 3.27. For
example, a pattern class may collect additional state information beyond that provided by
predefined state sequences.

Figure 4.7 exemplifies the concept of implementing performance properties as classes by
means of the late-sender property (Example 3.1). The corresponding pattern class returns
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class LateSender(Pattern):

"Late Sender"

def parent(self):
return "P2P"

def recv(self, root):
e_1 = self._trace.event(root[’enterptr’])
if (self._trace.region(e_1[’regid’])[’name’] == "MPI_Recv"):

s_1 = self._trace.event(root[’sendptr’])
e_2 = self._trace.event(s_1[’enterptr’])
if (self._trace.region(e_2[’regid’])[’name’] == "MPI_Send"):

idle_time = e_2[’time’] - e_1[’time’]
if idle_time > 0 :

locid = e_2[’locid’]
cnode = e_2[’cnodeptr’]
self._severity.add(cnode, locid, idle_time)

Figure 4.7: Python class definition of theLate Sendercompound event.

P2P as its parent because the behavior specified by that class is aspecialization of point-
to-point communication.

Every time theEXPERT analyzer encounters aReceiveevent, therecv() method is in-
voked on the pattern instance and a dictionary containing the Receiveevent is passed as the
root argument. The pattern first tries to locate theEnterevente 1 of the enclosing region
instance by following theroot[enterptr] attribute. After verifying that this region
instance is anMPI Recv, the correspondingSendevent is determined by tracing back the
root[sendptr] attribute. Now, the pattern looks for theEnterevente 2 of the region
instance from which the message originated by following thes 1[enterptr] attribute.
The analyzer then checks whether the region instance from where the message has been
sent is anMPI Send.

After locating all constituents, the chronological difference between the twoEnter events
e 1 ande 2 is computed. Since theMPI Recvhas to be posted earlier than theMPI Send,
theidle time has to be greater than zero. If that is true, the measured idletime is added
to the severity-matrix cell defined by the location and call path ofe 2 according to Section
3.8.3. After the analysis has been finished, each matrix cellcontains the sum of all idle
times introduced by theLate Sendersituation.

4.4.6 Performance Properties

Figure 4.8 shows the hierarchy of predefined performance properties that are supported by
the current prototype ofEXPERT. The set should not be regarded as complete, but it is
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representative in that it shows the usefulness and feasibility of the analysis method and the
advantages of the tool architecture used to implement it.

Lock Competition

Wait at Barrier

Wait at Barrier

Wait at N x N

Early Reduce

Messages in Wrong Order

Late Receiver

Total

Execution

Idle Threads

MPI

OpenMP

Communication

Fork

Collective

Point to Point

Late Sender

Late Broadcast

Synchronization

Barrier

Messages in Wrong Order

Flush

Implicit

Explicit

Critical

API

Sychronization

IO

Wait at Barrier

Figure 4.8:EXPERT’s hierarchy of predefined properties.

The set of performance properties is split into two parts. The first part, which constitutes
the upper layers of the hierarchy and which is indicated by white boxes, is mainly based
on summary information involving, for example, the total execution times of specialMPI

routines, which could also be provided by a profiling tool. However, the second part, which
constitutes the lower layers of the hierarchy and which is indicated by gray boxes, involves
idle times that can only be determined by comparing the chronological relation between
individual events. This is where the compound-event approach can demonstrate its full
power. A major advantage ofEXPERT lies in its ability to handle both groups of perfor-
mance properties in one step. A detailed discussion of the most interesting situations of this
second kind can be found in Section 3.8. Moreover, a way to extend the predefined set by
adding custom-made property specifications is presented inSection 4.4.7. The following
briefly explains the performance properties that are currently implemented inEXPERT.
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Total. Time spent on program execution including the idle times of slave threads during
OpenMP sequential execution. It corresponds to the intervals covered by the light-
gray and dark-gray bars in Figure 4.3. When a master thread isexecuted in an interval
([t1, t2], master) during a sequential period, all its slaves are assumed to execute in
([t1, t2], slave) and to pass through the same call paths as the master does.

Execution. Time spent on program execution but without the idle times ofslave threads
during OpenMP sequential execution. It corresponds to the intervals covered by the
dark-gray bars in Figure 4.3.

MPI. Time spent onMPI API calls.

Communication. Time spent onMPI API calls used for communication.

Collective. Time spent on collective communication.

Early Reduce. Collective communication operations that send data from all processes to
one destination process (i.e., n-to-1) may suffer from waiting times if the destination
process enters the operation earlier than its sending counterparts, that is, before any
data could have been sent. The property refers to the time lost as a result of that
situation.

Late Broadcast. Collective communication operations that send data from one source
process to all processes (i.e., 1-to-n) may suffer from waiting times if destination
processes enter the operation earlier than the source process, that is, before any data
could have been sent. The property refers to the time lost as aresult of that situation.

Wait at N × N. This property corresponds to the situation of Example 3.4 (p. 68). Col-
lective communication operations that send data from all processes to all processes
(i.e., n-to-n) exhibit an inherent synchronization among all participants, that is, no
process can finish the operation until the last process has started. The time until all
processes have entered the operation is measured and used tocompute the severity.

Point to Point. Time spent on point-to-point communication.

Late Receiver. This property corresponds to the situation of Example 3.2 (p. 66). A
send operation is blocked until the corresponding receive operation is called. This
can happen for several reasons. Either theMPI implementation is working in syn-
chronous mode by default or the size of the message to be sent exceeds the available
MPI-internal buffer space and the operation is blocked until the data is transferred to
the receiver.

Messages in Wrong Order (Late Receiver). A Late Receiversituation may be the result
of messages that are sent in the wrong order. If a process sends messages to processes
that are not ready to receive them, the sender’sMPI-internal buffer may overflow so
that from then on the process needs to send in synchronous mode causing aLate
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Receiversituation. The detection of messages that have been sent in the wrong order
is discussed in Example 3.3 (p. 67).

Late Sender. This property corresponds to the situation of Example 3.1 (p. 65). It refers
to the time wasted when a call to a blocking receive operation(e.g, MPI Recv or
MPI Wait) is posted before the corresponding send operation has beenstarted.

Messages in Wrong Order (Late Sender). A Late Sendersituation may be the result of
messages that are received in the wrong order. If a process expects messages from
one or more processes in a certain order while these processes are sending them
in a different order, the receiver may need to wait longer fora message because
this message may be sent later while messages sent earlier are ready to be received.
The detection of messages that have been sent in the wrong order is discussed in
Example 3.3 (p. 67).

IO (MPI). Time spent onMPI file IO.

Synchronization (MPI). Time spent onMPI barrier synchronization.

Wait at Barrier (MPI) This property is similar to the situation of Example 3.4 (p. 68).
It covers the time spent on waiting in front of anMPI barrier. The time until all
processes have entered the barrier is measured and used to compute the severity.

OpenMP. Time spent on the OpenMP run-time system.

Flush (OpenMP). Time spent on flush directives.

Fork (OpenMP). Time spent by the master thread on team creation.

Synchronization (OpenMP). Time spent on OpenMP barrier or lock synchronization.
Lock synchronization may be accomplished using either API calls or critical sec-
tions.

Barrier (OpenMP). The time spent on implicit (compiler-generated) or explicit (user-
specified) OpenMP barrier synchronization. As already mentioned, implicit barriers
are treated similar to explicit ones. The instrumentation procedure replaces an im-
plicit barrier with an explicit barrier enclosed by the parallel construct. This is done
by adding a nowait clause and a barrier directive as the last statement of the paral-
lel construct. In cases where the implicit barrier cannot beremoved (i.e., parallel
region), the explicit barrier is executed in front of the implicit barrier, which will
be negligible because the team will already be synchronizedwhen reaching it. The
synthetic explicit barrier appears in the display as a special implicit barrier construct.

Explicit (OpenMP). Time spent on explicit OpenMP barriers.

Implicit (OpenMP). Time spent on implicit OpenMP barriers.
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Wait at Barrier (Explicit). This property corresponds to the situation of Example 3.5
(p. 69). It covers the time spent on waiting in front of an explicit (user-specified)
OpenMP barrier. The time until all processes have entered the barrier is measured
and used to compute the severity.

Wait at Barrier (Implicit). This property corresponds to the situation of Example 3.5 (p.
69). It covers the time spent on waiting in front of an implicit (compiler-generated)
OpenMP barrier. The time until all processes have entered the barrier is measured
and used to compute the severity.

Lock Competition (OpenMP). This property corresponds to the situation of Example
3.6 (p. 70). It refers to the time a thread spent on waiting fora lock that had been
previously acquired by another thread.

API (OpenMP). Lock competition caused by OpenMP API calls.

Critical (OpenMP). Lock competition caused by critical sections.

Idle Threads. Idle times caused by sequential execution before or after anOpenMP paral-
lel region. It corresponds to the intervals covered by the light-gray bars in Figure 4.3.

4.4.7 Extensibility Mechanism

EXPERT provides a large set of built-in performance properties covering the most frequent
inefficiency situations. But sometimes the user may wish to consider application-specific
metrics, such as iterations or updates per second. In this case, the user can simply write an-
other pattern class that implements a custom-made application-specific performance prop-
erty. Of course, the new property must adhere to the common interface defined by base
classPattern. After that, the user can place it into the module where the other patterns
are located.

At startup time,EXPERT dynamically queries the module’s name space and looks through
all of the module’s pattern classes including the newly inserted ones, from which it is now
able to build instances. The new patterns are integrated into the graphical user interface
and can be used like the predefined ones. Note that this mechanism relies on the Python
module concept, which allows a module’s namespace to be searched at run time.

However, as already mentioned, the placement of new properties in the hierarchy or the
modification of existing ones must satisfy the constraints from Section 4.4.3. That means,
the severity of a property must always be a subset of the severity of its parent property (4.7)
and the severity of sibling properties must always be non-overlapping (4.13), which may
complicate the design of new properties in that new properties are limited in their potential
coverage ofCPU-reservation time.
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4.5 Visualization of Performance Behavior

Pancake [63] regards human factors as the reasons for the limited acceptance of perfor-
mance tools among program developers. Often tools are “hardto learn” and “too complex
to use”. Influenced by the way developers approach the task ofperformance analysis, she
identifies key requirements for performance tools that should be met to increase their us-
ability: support for exploring the total performance space, support for comparing different
aspects of program behavior, and support for navigating through complex source-code hi-
erarchies. The design goal of theEXPERT presenter was the accommodation of all these
three features in a simple but powerful display based on a uniform multi-dimensional hier-
archical organization and ranking of different items usingcolors.

The user can interactively access each of the hierarchies constituting a dimension of the
performance space usingweighted trees. A weighted tree is a tree browser that labels
each node with a weight.EXPERT uses the severity amount associated with that node as a
weight. To simplify comparison of different weights, the weight is written as a percentage
of the CPU-reservation time. The weight that is actually displayed depends on the state
of the node, that is, whether it is expanded or collapsed. Theweight of a collapsed node
represents the whole subtree associated with that node, whereas the weight of an expanded
node represents only the fraction that is not covered by its descendants because the weights
of its descendants are now displayed separately. This allows the analysis of performance
behavior on different levels of granularity.

For example, the call tree may have a nodemainwith two childrenfooandbar (Figure 4.9).
In the collapsed state, this node is labeled with the weight representing the time spent in
the whole program. In the expanded state it displays only thefraction that is spent neither
in foonor inbar.

 10  main

  30  foo

  60  bar

100  main

Figure 4.9: Weighted tree in collapsed and expanded state.

The weight is displayed simultaneously using both a numerical value as well as a colored
icon. The color is taken from a spectrum ranging from blue to red representing the whole
range of possible weights (i.e., 0 - 100 percent). To avoid anunnecessary distraction,
insignificant values below a threshold of0.5 percent are displayed in gray. Colors enable
the easy identification of nodes of interest even in a large tree, whereas the numerical values
enable the precise comparison of individual weights.

The complete performance-space display is depicted in Figure 5.3 (p. 119). The left tree
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shows the performance-property hierarchy, the middle treeshows the call-path hierarchy,
and the right tree shows the location hierarchy. The weighted trees of the different dimen-
sions are interconnected so that the user can display the call tree with respect to a particular
performance property and the location tree with respect to aparticular node in the call tree.
After selecting a property and a call path, the call tree refers to the selected property, and
the location tree refers to both the selected property and the selected call path. Note that
references to selected items also take into account the state (i.e., collapsed or expanded) of
these items.

Table 4.1 summarizes the severity shown by a node in the performance-space display. A
noded of one of the three trees either represents a performance propertyb ∈ B, a call path
n ∈ N , or a location̂l ∈ L̂. The state of a node is given by a functionstate(d) ∈ {e, i},
which indicates whether a node is collapsed (i) or expanded (e). Note that a collapsed
node corresponds to inclusive semantics (i) and an expanded node corresponds to exclusive
semantics (e). In addition,bsel denotes the selected property andnsel the selected call path.

Table 4.1: Severity amounts shown in tree displays.

Displayed Node Severity
b ∈ B |ŝev(state(b)),i,i)(b, root(N), root(L̂)|

n ∈ N |ŝev(state(bsel),state(n),i)(bsel, n, root(L̂)|

l̂ ∈ L̂ |ŝev(state(bsel),state(nsel),state(l))(bsel, nsel, l̂)|

In the default mode, the display represents the severity as apercentage of the totalCPU-
reservation time. This mode is called theabsolute modebecause all percentages refer to
the same yardstick. However, applications that exhibit a large call tree and many locations
may suffer from very small values in the call tree and, in particular, in the location tree,
which may limit the display’s scalability. For this reason,the presenter offers arelative
view mode. In this relative view mode, a percentage shown in a tree always refers to the
selection in the left neighbor tree. For example, the display in Figure 5.3 (p. 119) is in the
absolute mode. Each value is a percentage of the totalCPU-reservation time. In contrast,
the display in Figure 5.1 (p. 116) is in the relative view mode. The12.1 percent shown for
process 0 in the location tree represents12.1 percent of2.4 percent (selected call path) of
2.0 percent (selected property) of theCPU-reservation time.

Weighted trees provide a uniform and very intuitive displayfor each of the analyzed di-
mensions. Once the user is familiar with this kind of display, it is possible to navigate
across the performance space in a scalable but still accurate way along all its intercon-
nected dimensions. First, the presenter allows exploration of the full performance space
by showing the results of a multidimensional analysis in a multidimensional fashion using
three interconnected tree browsers. Second, instead of confusing the user with differently
styled views for different metrics, all performance properties are uniformly accommodated
in the same display and thus provide the ability to easily compare the effects of different
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kinds of performance behavior. In addition, since the user only needs to get accustomed
to one way of presentation, the necessary learning efforts are small. Third, the ability to
investigate the performance behavior of individual nodes in the call tree (i.e., call paths)
either including or excluding their descendants allows theanalysis of complex source-code
hierarchies along the functional dependences of their elements.

4.6 Limitations

Despite its strengths, the approach taken in this thesis exhibits some limitations that re-
sult both from general limitations of event tracing on the one hand and from particular
properties of the trace-analysis method proposed here on the other hand.

• The event-trace size, which may easily reach several millions of events or several
hundreds of megabytes when dumped to a file, constitutes a severe obstacle to a
ubiquitous application of all trace-based performance-analysis techniques. The dif-
ficulties of handling large traces result from their local buffer-memory requirements
during generation, which may, in addition to competing for the target application’s
memory, cause significant perturbation when the buffer contents are written to a file
as a result of buffer overflow. Also, global trace-file sizes may limit scalability in the
case of massively parallel systems with thousands of processors.

• As a consequence of the enormous trace-file sizes, the analysis process performed
by EXPERT may take several hours to complete. Although a processing time of sev-
eral hours might be acceptable if it results in substantial performance improvements,
to convince the user community a production tool should offer more convenience
also with respect to speed. However, the current Python implementation still of-
fers opportunities for optimization. Section 4.7 presentsconcepts that are aimed at
optimizing the analysis process in terms of speed and maintenance.

• As already mentioned in Section 4.4.1,EXPERT does not compute the severity of
a performance property as an interval set. Instead it computes only the amount by
summing up the amounts of simple intervals. To ensure the correctness of computing
the inclusive and exclusive severity, the severity intervals of siblings in the property
hierarchy must be non-overlapping (4.13), which may limit the freedom of extending
that hierarchy at least to some extent.

4.7 Advanced Techniques

This section presents concepts partially dealing with the previously mentioned limitations,
which are too detailed and too specific to be mentioned in the last chapter, but still too early
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in design and development to be considered finished.

4.7.1 Selective Tracing

Another option for speeding up the analysis process is selective tracing. The central idea
of selective tracing is to reduce trace-file size and intrusion by recording only a selected
subset of the performance space, which implies that the selection can be done along sev-
eral dimensions, such as time, source code, or locations. The selection may be based both
on omitting performance data showing only inconspicuous behavior or on avoiding repe-
tition by restricting the measurement to a small but still representative subset of program
execution. However, both methods require either some form of dynamic instrumentation
or multiple experiments because neither suspicious program parts nor the occurrence of
repetitive behavior are usually known prior to the first measurement.

A simple method of identifying performance-relevant program parts for the purpose of se-
lective tracing is to generate a profile prior to event tracing. Then, tracing can be restricted
to those program parts that show performance-relevant behavior in the profile. However, in
some cases a call-graph–based profile, which can be obtainedusing a call-graph profiler,
such asCATCH [17], might be necessary to also identify the context in which a certain
function exhibits inefficient behavior.

Another strategy of dynamically moving from coarse-grained performance data with low
space requirements for large portions of program behavior to fine-grained performance data
for small suspicious parts of program behavior which have been identified based on the
coarser data, was successfully applied by Miller et al. [55]in the Paradyn project, although
it is not used there for event tracing. A recent addition to the Paradyn tool [12] was a
call-graph–based search strategy that climbs down the callgraph stepwise from callers to
callees. A callee is chosen for instrumentation if the caller exceeds a certain threshold with
respect to a certain performance metric.

A third approach motivated by the desire to restrict event traces to representative subsets
of program execution is presented by Freitag et al. [28]. They try to exclude periodical
repetitions of iterative patterns by applying a periodicity-detection algorithm to the stream
of parallel function identifiers at run time. This seems to bepromising in particular in view
of the many iterative applications in computational science.

However, the approach of compound-event detection based onevent-model enhancement
imposes some consistency constraints on selective traces,which must be considered when
opting for a selection method. An event trace that starts somewhere in the middle of pro-
gram execution or that does not contain the events of certainexecution phases may, for
example, suffer from incomplete region instances and messages, that is, incomplete pairs
of Enter-Exit and Send-Receiveevents. In addition, it may contain only fractions ofMPI
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collective-operation or OpenMP parallel-construct instances. All this may cause the ab-
stractions defined in Chapter 3 to fail as a result of an incomplete event trace. In general,
the necessary completeness constraints may vary dependingon the set of abstractions re-
quired and on the kind of compound events to be detected.

A simple model of selective tracing in the context of model enhancement would require
the selective trace to start with some form of check-point information and then continue
with individual events. A check-point could contain the current call-graph node(s) and
all pending communications. However, writing a check pointwould require tracking this
information continuously during run time

DeRose and Wolf [17] propose a technique for tracking the call graph at run time with
constant overhead based on binary instrumentation. They compute the static call graph in
advance and for every control flow move a pointer from node to node as program execution
proceeds. Each call site provides an index into an array of successor nodes so that the next
node to be reached by that call site can be quickly determinedbased on that index.

A method of dealing with pending communications, that is, pending MPI point-to-point
messages and collective operations, would be their avoidance by starting the selective trace
only after finishing a (synchronizing) collective operation involving all processes since in
most applications point-to-point communication is usually not interleaved with collective
communication. This approach is especially well suited forselective traces covering single
iterations of large loops because in many applications an iteration is finished with a global
reduction operation or a barrier.

4.7.2 Publish and Subscribe

The current design ofEXPERT implements performance properties as pattern classes. Each
class is separately responsible for both compound-event instantiation and constraint ver-
ification. A sharing of functionality is restricted to exploiting the inheritance hierarchy,
which is not identical to the specialization hierarchy and,thus, is of limited benefit for
this purpose. This low level of cooperation among differentpattern classes causes certain
aspects of similar properties to be both specified and computed twice.

Another more effective way of sharing functionality among different properties would be
to exploit the increasing specialization of compound events along a path in the property
hierarchy. For example, the propertyMessage in Wrong Orderoperates onLate Sender
compound-event instances. Currently, the two properties are computed independently.

So instead of providing a call-back method only for primitive events a property (i.e., pattern
object) could also “subscribe” to compound events that are “published” by other properties
residing on a higher level in the hierarchy. The subscribersin turn could add some fea-
tures to the compound event and republish it as a more specialized version of the one they
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received as a subscriber. As long as a property may only subscribe to compound events
published by more general properties it is ensured that there are no cyclic dependences.
The compound events to be published could be specified as classes with specific access
methods.

4.7.3 Generic Visualization

The strength of the visualization technique applied byEXPERT stems from its uniform
treatment of all performance properties, which allows their accommodation in a single
integrated view. This not only simplifies the tool usage but also gives an opportunity to
correlate different aspects of performance behavior.

Besides improvements in the context ofEXPERT, such as adding a source-code display to
highlight code regions or integrating it with an event-trace browser to show representative
compound-event instances, the underlying idea of presenting performance data in a multi-
dimensional property-oriented performance space offers the opportunity of a much broader
coverage of different performance data.

Since the representation of performance properties including their severity is independent
of their semantics, a similar visualization could be used for a different performance tool
relying on different performance metrics. For example, a profiler, such asCATCH [17],
might collect cache events per call-graph node and location. Since cash events can be
organized in a hierarchy, for example, based on access type (all, read, or write) or level in
a multilevel cache, a multidimensional representation with the number of events indicated
by color would be appropriate here as well. Even different dimensions, such as resource
hierarchies as used in Paradyn [55], can conceivably visualized in that way.

A reasonable conclusion drawn from these considerations would be to establish the
property-oriented performance space as an independent data model that can serve three
different goals:

1. High-level data model of performance behavior

2. Portable data format

3. Generic presentation component

First, as a data model it can help to define relationships among different performance prop-
erties, such as specialization and generalization, or relationships among different locations,
such asMPI process topologies. Note that it need not be restricted to hierarchical organi-
zations. Second, as a portable data format it can be used to store both static performance
metadata describing these relationships and dynamic performance data representing a par-
ticular experiment in the context of these relationships. In view of a frequently occurring
hierarchical organization of performance entities, such adata format could be designed
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as anXML [74] instance. Third, files in that data format can serve as input for a generic
visualization component that is dynamically adapted basedon the file’s metadata.

4.8 Summary

TheEXPERT performance tool analyzes the performance behavior ofMPI, OpenMP, or hy-
brid applications by transforming event traces into a three-dimensional property-oriented
performance space. The key idea behind the property-oriented performance space is the
uniform treatment of all performance properties, allowingtheir convenient correlation
along multiple dimensions using only a single integrated view.

A thread-safe multi-level instrumentation captures events related to ordinary user functions
as well as events specifically related toMPI and OpenMP on the source-code, compiler, and
linker level and merges them into a single event trace with global time stamps.

The analysis process tries to prove the presence of performance properties in the target
application by looking for the existence of compound eventsin the event trace. Compound
events are specified in terms of an enhanced event model, on which the actual analysis
process takes place.

After analysis has been completed, all performance properties return their severity ma-
trix representing their plane of the performance space. Then, the matrices of individual
properties are combined into a three-dimensional data structure spawning the whole per-
formance space. After adding hierarchical locations to thedata structure, it is displayed
using weighted trees. Each tree represents a dimension of the performance space and al-
lows a scalable inspection of that dimension by showing the severity of a node in the tree
either including all its children in a collapsed state or excluding all its children in an ex-
panded state. In addition to a numeric value, the severity isalso indicated by color to
highlight extremes even in the case of large trees.
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Chapter 5

Examples

TheEXPERT performance-analysis environment has been tested for several real-world ap-
plications. The chapter demonstrates that the performanceproblems addressed by the
present approach are of practical relevance and that they can be conveniently localized
using theEXPERT presentation component. The test cases comprise twoMPI applications,
TRACE andCX3D, and two hybrid applications,REMO andSWEEP3D. The thesis considers
one event trace per application.

All the experiments were conducted onZAMpano [27], a parallel computer with eight
SMP nodes, each having four Intel Pentium III Xeon (550 MHz)CPUs. CPU reservation
was done such that oneCPU per thread or single-threaded process was available to each
application.

Table 5.1: Trace-file size and overhead.

TRACE CX3D REMO SWEEP3D

CPUs 16 8 16 16

Size (MB) 310 34 170 72

Execution time (sec) 58.9 139.8 37.2 16.5

Overhead (%) 4.2 0.1 9.7 6.0

Analysis time (h:m) 12 : 57 1 : 25 9 : 48 3 : 22

Table 5.1 summarizes trace-file size and overhead. The first row contains the program
name, the second row shows the number ofCPUs used, the third row lists the trace-file size,
and the fourth row gives the execution time. To estimate the run-time overhead introduced
by the instrumentation, the minimum execution time of a series of ten uninstrumented runs
was compared to the minimum execution time of a series of ten instrumented runs. The
result is listed in the fifth row. Finally, the last row shows the duration of the analysis
process carried out on the test platform.

115
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The large trace-files sizes obtained for only short execution times expose a limitation of the
current approach. Selective tracing techniques, as discussed in Section 4.7.1, might help to
reduce temporal event density while preserving relevant information. The inconveniently
long analysis run times are not only a result of large trace-file sizes, but also a consequence
of the prototype’s early design stage. One opportunity for optimization is, for example, an
improved information exchange among different performance properties during analysis,
as outlined in Section 4.7.2. In addition, the re-implementation in a fast programming
language, such as C++, might also contribute to better speedresults. The overhead numbers
presented in the table are satisfactory, only the instrumentation overhead ofREMO reaches
nearly ten percent. However, since the performance problemidentified inREMO is large in
relation to the overall execution time, the numbers presented here concerning this problem
are still useful (Section 5.3).

5.1 TRACE

TRACE [26] simulates the subsurface water flow in variably saturated porous media. The
parallelization is based on spatial decomposition and a parallelized CG algorithm. The
application was executed using fourSMP nodes with four processes per node (4 processes
× 4 processes).MPI communication withinSMP nodes was done via shared memory.

Using the performance-property view (Figure 5.1, left), itis easy to see that most of the

Figure 5.1: Display of performance behavior inEXPERT for TRACE in the relative view
mode.
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time used for communication routines was spent on waiting due to the situationsLate
SenderandWait at N× N, which are described in Example 3.1 (p. 65) and 3.4 (p. 68).

Using the call-tree view (Figure 5.1, middle), one can quickly locate two call paths that
are major sources of the previously identified performance problems. The call path mainly
responsible for the propertyWait at N× N is shown in the vertical middle of the call tree.
The presenter display was switched to the relative view mode, that is, whereas the values
and colors on the left are percentages of the totalCPU reservation time, the percentages
in the middle are fractions of the selection (node with framed label) on the left, and the
percentages on the right are fractions of the selection in the middle. For example, the9.8
percent shown for the selected call path in the middle is9.8 percent of2.4 percent of the
total CPU reservation time.

The results of the analysis are listed in Table 5.2. While thetop section of the table lists
the two call paths, the bottom section contains the numerical results obtained for the whole
program and these two call paths. The values in the bottom section represent percentages
of the totalCPU-reservation time. The first column refers to the whole program, whereas
the second and third columns refer to the call paths listed above in the table. The first row
corresponds to the time spent inMPI communication statements. For the two call paths this
is just the time needed for completion of the specificMPI calls at their end. The second and
third row correspond to the waiting times caused by theWait at N× N andLate Sender
situations.

The location view (Figure 5.1, right) shows the distribution of idle times introduced byWait
at N× N during execution of the call path selected in the middle treeof Figure 5.1, which is
another call path responsible for that property. Obviously, the idle times expose an uneven
but still symmetric distribution across the different processes. The “inner” processes of
eachSMP node exhibit significantly less waiting time than the “outer” ones. Figure 5.2
shows aVAMPIR [3] time-line diagram ofTRACE when executing this call path. The time

Table 5.2: Performance problems found inTRACE in percentage of the totalCPU-
reservation time.

Call Paths

(a) trace → cgiteration → parallelcg → parallelfemultiply → exchangedata →

exchangebufferswf → mrecv → MPI Recv

(b) trace → cgiteration → parallelcg → paralleldotproduct → globalsum r1 →

MPI Allreduce

Performance Property Whole Program (a) (b)

Communication 14.3 7.8 3.0

Late Sender 7.3 5.8

Wait at N× N 2.4 2.2
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line presents a noticeableWait at N× N instance. The distribution of the waiting times in
MPI Allreduceshown in the time line bears a clear resemblance to the distribution shown in
theEXPERT result display (Figure 5.1, right) in that every second pairof processes suffers
from significant waiting times.

Figure 5.2:VAMPIR time-line diagram ofTRACE.

5.2 CX3D

CX3D is an MPI application used to simulateCzochralskicrystal growth [54], a method
applied in the silicon-wafer production. The simulation covers the convection processes
occurring in a rotating cylindrical crucible filled with liquid melt. The convection, which
strongly influences the chemical and physical properties ofthe growing crystal, is de-
scribed by a system of partial differential equations. The crucible is modeled as a three-
dimensional cubic mesh with its round shape expressed by cyclic border conditions. The
mesh is distributed across the available processes using a two-dimensional spatial decom-
position. The application was executed on twoSMP nodes with four processes per node.
MPI communication withinSMP nodes was done via shared memory.

Most of the execution time is spent in a routine calledVELO, which is responsible for
calculating the new velocity vectors. Communication is required when the computation
involves mesh cells from the border of each processor’s subdomain. The execution con-
figuration ofCX3D is determined by the number of processes that are assigned toeach of
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Figure 5.3: Display of performance behavior inEXPERT for CX3D in the absolute view
mode.

the two decomposed dimensions. The experiment presented here was conducted with a
decomposition configuration of8 × 1 processes.

The results in Table 5.3 show that a significant amount of the communication time was
introduced byLate SenderandWait at N× N. Using the call-tree view (Figure 5.3, middle),
it is easy to identify two call paths mainly responsible for these performance properties.
Both call paths are executed as parts ofVELO. They are listed in the top section of the
table.

Using the location view (Figure 5.3, right), one can easily investigate the distribution of
the identified performance problems across the processes and, in particular, look for sim-

Table 5.3: Performance problems found inCX3D in percentage of the totalCPU-reservation
time.

Call Paths

(a) velo → crecvxs → MPI Recv

(b) velo → MPI Allreduce

Performance Property Whole Program (a) (b)

Communication 18.4 7.1 6.9

Late Sender 5.8 4.6

Wait at N× N 7.5 6.6
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ilarities and correlations among the distributions of different properties. Figure 5.3 shows
the distribution of the propertyLate Senderacross the processes. It is obvious that most of
the time associated with this property is caused by process 0and 7.

The bar chart in Figure 5.4 compares the distribution ofLate Senderin routine VELO

to the distribution of other properties also available in the EXPERT presenter.Execution
(exclusive)is the execution time ofVELO that was not spent onMPI and, thus, roughly
corresponds to the time spent solely on computation.Communicationis the time spent
on MPI communication statements. Since inVELO call path (a) is the only source ofLate
Senderand call path (b) is the only source ofWait at N× N, both properties in the bar chart
refer toVELO as a whole as well as to the two call paths alone.

Apparently, the computation is unevenly distributed across the different processes, a situ-
ation that is commonly referred to as load imbalance. Moreover, it seems that there is a
correlation between this load imbalance and the times spenton Late SenderandWait at N
× N. Every time the computation time is low, the times spent on both Late SenderandWait
at N× N are high. Notice that the difference betweenCommunicationand the sum ofLate
SenderandWait at N× N is always very small compared to the computation time.
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Figure 5.4: Distribution of performance properties inVELO across the processes.

A VAMPIR time-line diagram ofCX3D when executingVELO is shown in Figure 5.5. The
middle of the time line exhibits a noticeableLate Senderinstance. Process 7 tries to receive
a message from process 6 usingMPI Recv, but the message is sent long after process 7 has
entered the receive operation. Some other but smaller instances follow shortly after this
one. Finally, on the right part of the time line one can recognize aWait at N× N instance
across all processes. Note that the workload distribution across all processes for the section
of the time line shown here corresponds to the observations made byEXPERT in that the
fraction process 7 spent on computation is small compared tothe other processes. This
seems to be the reason that theMPI operations are entered earlier by process 7 and, thus,
the reason for the inefficient behavior.
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Figure 5.5:VAMPIR time-line diagram ofCX3D.

5.3 REMO

REMO [18] is a weather forecast application of theDKRZ (Deutsches Klima Rechenzen-
trum). It implements a hydrostatic limited area model, which is based on theDeutsch-
land/Europaweather forecast model of the German Meteorological Services (Deutscher
Wetterdienst (DWD)). The thesis considers an early experimentalMPI/OpenMP version of
the production code. The application was executed on four nodes with one process per
node and four threads per process (4 processes× 4 threads).

Figure 5.6 shows the result display ofREMO in the absolute mode, that is, all values and
colors represent percentages of the totalCPU-reservation time. The property view indicates
that one half of the totalCPU-reservation time is idle time (i.e.,Idle Threads) resulting from
OpenMP sequential execution outside of parallel regions. Although during this period the
idle threads actually do not execute any code, the time is mapped onto the call paths that
have been executed by the master thread during this time. That is to say, for analysis
and presentation purposesEXPERT assumes that outside parallel regions the slave threads
“execute” the same code as their master thread. This method of call-path mapping helps
to identify parts of the call tree that might be optimized in order to reduce the amount of
sequential execution.

In the case ofREMO, theEXPERT call-tree view (Figure 5.6, middle) allows the easy iden-
tification of two call paths as major sources of idle times. The location view (Figure 5.6,
right) illustrates that this property only applies to slavethreads. The analysis results are
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Figure 5.6: Display of performance behavior inEXPERT for REMO in the absolute view
mode.

listed in Table 5.4. The values shown in the bottom section represent the severity of the
propertyIdle Threadsmeasured for the whole program and the two call paths. The val-
ues are percentages of the totalCPU-reservation time lost as a result of this performance
property. The two call paths are listed in the top section.

Table 5.4: Performance problems found inREMO in percentage of the totalCPU-reservation
time.

Call Paths

(a) remo → remorg → ec4org → progec4 → phyec

(b) remo → remorg → ec4org → progec4 → progexp

Performance Property Whole Program (a) (b)

Idle Threads 51.6 11.4 9.9
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5.4 SWEEP3D

The benchmark codeSWEEP3D [4] represents the core of a realASCI application. It solves
a 1-group time-independent discrete ordinates (Sn) 3D Cartesian (XYZ ) geometry neutron
transport problem. The thesis considers an early experimental MPI/OpenMP version of the
original MPI version. WhileMPI is responsible for parallelism by domain decomposition,
OpenMP is responsible for parallelism by multitasking.

The application was executed on four nodes with one process per node and four threads
per process (4 processes× 4 threads). The performance behavior ofSWEEP3D exhibits a
weak point of hybrid programming, that is, a performance problem resulting from the com-
bination ofMPI and OpenMP. MPI calls made outside a parallel region prolong sequential
execution and prevent availableCPUs from being used by multiple threads. The results
are shown in Table 5.5. The call path (a) shown in the table is responsible for most of the
losses occurring due to the propertyIdle Threads. However, at the same time this call path
exhibits a significant loss due to the propertyLate Sender. Note thatLate Senderadds the
times of the master threads, whereasIdle Threadsadds the times of the slave threads (3
slaves per master). Taking this into account, reducingLate Senderby one percent would
speed up the application by four percent. Obviously, one reason for theLate Senderprob-
lem at call path (a) is receiving messages in the reverse sending order (Messages in Wrong
Order).

Moreover, a significant amount of time is spent on the implicit (i.e., compiler-generated)
OpenMP barrier at the end of call path (b). Expanding the node of the property Implicit
Barrier reveals that most of that time is lost due to the propertyWait at Barrier (see also
Example 3.5, p. 69). The property deals with the threads of a team reaching an implicit

Table 5.5: Performance problems found inSWEEP3D in percentage of the totalCPU-
reservation time.

Call Paths

(a) seep3d → inner auto → inner → sweep → recv real → MPI Recv

(b) driver → inner auto → inner/sweep → !$omp parallel → !$omp do →

!$omp ibarrier

Performance Property Whole Program (a) (b)

Idle Threads 37.5 17.5

Communication 6.5 5.8

Late Sender 3.2 3.2

Messages in Wrong Order 0.9 0.9

Implicit Barrier (OpenMP) 4.3 3.3

Wait at Barrier (OpenMP, implicit) 2.8 2.6



124 CHAPTER 5. EXAMPLES

Figure 5.7: Display of performance behavior inEXPERT for SWEEP3D in the relative view
mode.

barrier at different points in time so that threads arrivingearly have to wait for those which
arrive later. The location view in Figure 5.7 shows an unevendistribution of these waiting
times across the different threads. The display is in the relative view mode. Therefore,
values and colors in the middle and left tree are scaled with respect to the selection in the
right and middle tree, respectively.

The scheduling strategy applied by the enclosing parallel do loop was not specified in the
source code. In this case, the compiler used for this experiment statically assigns a con-
tiguous chunk of work (i.e., a contiguous section of the loop-index range) to each thread.
If the loop-index range is not divisible by the number of threads or if the different chunks
represent a different work load for another reason, the threads finish the loop at different
points in time. To demonstrateEXPERT’s capabilities in highlighting the effects of differ-
ent scheduling strategies on the distribution of waiting times across different threads, the
scheduling was changed to dynamic scheduling with a chunk size of one. This causes the
program to dynamically assign one loop-index value to each thread every time a thread asks
for new work. Figure 5.8 shows a result display forSWEEP3D with dynamic scheduling
instead of static scheduling. The waiting time is now more uniformly distributed compared
to the version with static scheduling.
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Figure 5.8: Display of performance behavior inEXPERT for SWEEP3D in the relative view
mode. The figure highlights the distribution of idle times infront of the implicit barrier
when applying dynamic loop scheduling.
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Chapter 6

Related Work

The approach presented here is not the first work on automaticperformance analysis. Re-
lated approaches - even if they did not serve as inspiration for the present approach - either
offer a different solution or emphasize a different view of the problem.

Miller et al. [55, 72] developed automatic on-line performance analysis based on run-time
instrumentation in the well-known Paradyn project. The Paradyn search process follows
the W 3 Search Model(why, where, when), which describes performance behavior along
the dimensions: performance problem, program resource (i.e., focus), and time. Similar to
EXPERT, the first two dimensions are organized in a specialization hierarchy. Performance
problems are expressed in terms of a threshold and a metric. Ametric usually refers to a
counter and is represented either as a percentage (e.g.,CPU time or blocking time), as a
rate (e.g., operations per second), or as a plain value (e.g., number of active processors).
Program resources include both hardware resources, such asprocessor nodes or disks,
and software resources, such as procedures, message channels, or barrier instances. The
time dimension tries to divide the program execution into phases with certain performance
characteristics. A performance-problem hypothesis is regarded as proven if the target ap-
plication exceeds the threshold associated with a metric for a certain amount of time. The
search process starts at the top level of thewhyandwhereaxis and performs a successive
refinement both in terms of problem type and focus based on hypotheses that have already
been proved. The main accomplishments ofEXPERT in contrast to Paradyn is the descrip-
tion of performance problems in terms of complex event patterns instead of counter-based
metrics. Also, the uniform mapping of performance behavioronto execution-time interval
sets in conjunction with a formal characterization of specialization among performance
problems allows the precise correlation of different behavior in a single integrated view.

The Autopilot [66] software infrastructure targets real-time adaptive control of resource
interactions in parallel and distributed systems. Automatic behavioral classification of
resource-request patterns based on data captured by distributed performance sensors and
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user-written assertions precedes a fuzzy decision procedure, which relies on actuators to
dynamically carry out changes in the current resource-management policy. Whereas this
thesis’s approach mainly concentrates on communication and synchronization, Autopilot
is useful, in particular, to control the performance of parallel file IO.

Gerndt and Krumme [30] developed a rule-based approach to automatic performance anal-
ysis of programs on shared–virtual-memory environments, such asSVM Fortran [8]. The
analysis process is specified as a rule base consisting of refinement rules and proof rules.
Refinement rules consist of a coarse hypothesis and more precise hypotheses to be checked
after the coarse hypothesis has been proved. Proof rules contain the declaration of perfor-
mance information required to prove a hypothesis and predicates that represent the hy-
pothesis’s semantics. The approach of Gerndt and Krumme advocates a clear separation
between the analysis process as represented by refinement rules and knowledge about po-
tential performance problems as represented by the proof rules. The rationale behind the
stepwise analysis process is to control the demand for finer performance data by evaluating
predicates over coarser data and thus to reduce the total amount of data necessary to assess
an application’s performance.

Finnesse [59] is a prototype environment designed by Mukherjee et al. to support in-
cremental parallelization of Fortran 77 programs for shared-memory architectures. The
parallelization process is guided by an overhead-orientedinterpretation of performance
loss relative to the performance of a reference (serial) implementation. Automatic static
analysis to calculate dependence information precedes theautomatic collection and clas-
sification of empirical overhead data by conducting severalexperiments. Depending on
the results, Finesse may recommend code transformations, whose effects can be assessed
using a version-management mechanism.

Espinosa [19] implemented an automatic trace-analysis tool KAPPA-PI for evaluating the
performance behavior ofMPI andPVM message-passing programs. Here, behavior classi-
fication is carried out in two steps. First, a list of idle times is generated from the raw trace
file using a simple metric. Then, based on this list, a recursive inference process contin-
uously deduces new facts on an increasing level of abstraction. Finally,KAPPA-PI builds
suggestions of possible improvements from the facts already proved on the one hand and
from the results of source-code analysis on the other hand.

Vetter [73] performs automatic performance analysis ofMPI point-to-point communication
based on machine-learning techniques. He traces individual message-passing operations
and then classifies each individual communication event using a decision tree. The decision
tree has been previously trained by microbenchmarks that demonstrate both efficient as
well as inefficient performance behavior. The ability to adapt to a special target system’s
configuration helps to increases the technique’s predictive accuracy. In contrast to this
approach,EXPERT draws conclusions from the temporal relationships of individual events
in a platform-independent way, which does not require any training prior to analysis.
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Helm and Malony propose the design of a novel performance-diagnosis systemPOIROT

[36] based on heuristic classification, which means solvingproblems by matching them to
previously stored solutions. The system consists of a problem solver and an environment
interface. The latter tries to overcome the poor combination of automation and adaptabil-
ity found in traditional approaches by separating diagnosis methods from the software that
supports those methods. The problem solver selects and carries out performance-diagnosis
actions. This process is supported by a knowledge base that provides both a method cata-
log and control knowledge. The method catalog is a library ofperformance diagnosis tech-
niques, such as rules of hypotheses refinement, whereas the control knowledge specifies
the general policy of the analysis process. However, recentresearch is moving away from
matching problems towards matching of performance models with performance data.1

A novel approach to the formalization of performance properties and the associated
performance-related data is theAPART Specification Language (ASL) [22], which was de-
veloped by theAPART working group onAutomatic Performance Analysis: Resources and
Tools. ASL provides a formal notation for defining performance properties related to dif-
ferent programming models. It allows performance-relateddata items to be referenced by
means of an object-oriented data model. In theASL terminology, a performance property
represents one aspect of performance behavior. To test whether such a property is present in
an application, an associated condition must be evaluated based on the current performance
data. The notion of a performance property strongly influenced the work onEXPERT and
motivated the notion of a property-oriented performance space. However, since the initial
ASL data model mainly concentrated on profiling data (i.e., summary information) and did
not take advantage of the more detailed information contained in event traces, the work on
compound events done in this thesis stimulated the treatment of trace data within theASL

framework. Appropriate extensions have been proposed in Section 3.9 and are now part of
the revisedASL specification [21].

Stimulated byASL, JavaPSL [23] was designed by Fahringer et al. to specify performance
properties based on the Java programming language. LikeEXPERT, JavaPSL represents
performance properties as abstract classes that can be implemented to provide an extensible
set of performance properties to be used in a real tool. WhereasEXPERT uses Python to
provide a uniform interface to performance properties, JavaPSL exploits mechanisms of
the Java language, such as polymorphism, abstract classes,and reflection. As opposed
to EXPERT, which concentrates on compound-event analysis and definesinter-property
relationships based on a subset condition referring to the time spent on a specific behavior,
JavaPSL emphasizes the definition of performance properties based on existing properties.
Key ideas are the definition of abstract classes to isolate commonalities of the property
implementation and the definition of metaproperties that depend on a whole set of existing
performance properties. Common to both approaches is the integrated treatment ofMPI,
OpenMP, and hybrid programming.

1Allen Malony: personal communication
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An alternative approach to describing complex event patterns was devised by Bates [5].
The proposed Event Definition Language (EDL) focuses on specifying incorrect behavior
of distributed systems. It allows compound events to be defined in a declarative manner
based on extended regular expressions, where primitive events are clustered to higher-
level events using certain formation operators. Relational expressions over the attributes
of the constituent events place additional constraints on valid event sequences obtained
from the regular expression. Abstraction mechanisms allowthe re-use of already defined
compound events to form custom hierarchies of events. However, problems arise when
trying to describe compound events that are associated withsome kind of state, such as
those representing performance problems inMPI and OpenMP applications.

Kranzlmüller [47] applies event-graph analysis in order to detect parallel-programming er-
rors. An event graph is a finite set of events connected by a happened-before relation [48].
The happened-before relation is derived from either the sequential order of events gener-
ated by the same process or message communications among different processes. Com-
plex erroneous behavior is expressed in terms of event patterns that are specified using a
graphical tool named PatternTool [33]. Abstraction mechanisms are based on selection
operations, relations, and macronodes. Selection operations identify groups of events with
similar characteristics. Relations refer to the relative positions of events in the graph and
allow the identification of predecessors and successors of an event. Finally, a macronode
is a collection of possibly different event-graph patternsthat allow arbitrary complex pat-
terns to be constructed for any imaginable algorithm. As opposed to this approach, the
compound-event specification used forEXPERT relies on complex relations based on state
information that are suitable for expressing the inefficient behavior of parallel programs on
the level of the underlying programming models.

Much work has been done on the visualization of performance data. Apart from standard
displays of profiles and event traces, such as Apprentice [14] (Figure 2.3, p. 23) andVAM -
PIR [3] (Figure 2.2, p. 18), and call-graph–based profile displays, such as Xprofiler [42]
(Figure 2.4, p. 24), which have all been described in Section2.7, very sophisticated perfor-
mance data displays tried to approach the problem of hiding tool complexity behind simple
but still expressive presentation techniques. Solutions range from animated displays, such
as those included in ParaGraph [35], to complete virtual reality environments that allow
an immersive investigation of the performance space, such as Virtue [68]. However, the
emphasis ofEXPERT was not the invention of a new display in a technical sense. After
all, the use of tree browsers is not revolutionary and even the coloring of nodes in the tree
has been previously applied, for example, in the xlcb [13] corefile browser. However,EX-
PERT shows that an intuitive but still insightful perception of performance behavior can be
achieved through uniformity and simplicity both in the logical model of the performance
space as well as in its visual representation, which is realized just by coupling standard tree
browsers.

The integration ofMPI and OpenMP in a single tool has been addressed by other researchers
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as well. Hoeflinger et al. [38] integrated theVAMPIR [3] event trace browser with the
GuideView [45] OpenMP analyzer to build a new toolVGV for MPI/OpenMP applications.
VGV provides a scalable time-line view of an event trace highlighting sections of mul-
tithreaded program execution. The user can select individual sections and analyze them
using a graphical profile display. AlthoughVGV is not an automatic tool in terms of auto-
matic behavioral classification, it is listed here for its integrated treatment of both program-
ming models. Similarly, the Paraver tool [20] provides trace visualization and quantitative
trace analysis of hybrid applications but lacks support forautomatic performance-problem
detection.
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Chapter 7

Summary and Conclusions

The structure of current parallel systems complicates their performance behavior in a way
that limits the ability of program developers to reliably predict the performance implica-
tions of their design decisions. Complex interactions among multiple layers ranging from
sophisticated processor architectures to elaborated communication middleware must be
taken into account when “engineering” an application for high performance.

In this context, parallel computers withSMP nodes deserve major interest for two reasons.
First, they combine the packaging efficiencies of shared-memory multiprocessors with the
scaling advantages of distributed-memory architectures.The result is a computer architec-
ture that can scale more cost-effectively in size. Second, this class of parallel computer
architecture captures the two dominant architectures of shared memory and distributed
memory as subsets. Its hybrid nature is reflected in different modes of parallel execu-
tion (i.e., shared-memory multithreading vs. distributed-memory message passing). As
a consequence, performance optimization becomes more difficult and creates a need for
advanced performance tools that are able to address this class of computing environments.

This thesis presents a novel approach to analyzing the performance behavior of parallel
computers withSMP nodes. The approach is based on automatically transformingevent
traces ofMPI, OpenMP, or hybrid applications onto a higher abstraction level that allows
the program developer to identify complex situations of inefficient behavior and to quantify
the extent to which they affect the overall performance.

The analysis of performance concentrates on a suboptimal usage of the parallel program-
ming model. Inefficient performance behavior is specified interms of compound events
composed of simple events as contained in the trace file. To simplify their specification,
a framework has been developed which offers two different kinds of abstraction that can
be used to encapsulate complex programming-model–specificrelationships. First, state se-
quences describe the execution state of an application and provide a convenient means to
identify distributed activities, such as collective operation instances, by grouping all events
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involved in such an activity. Second, pointer attributes connect single related events and
allow the specification of compound events along a path of such events. The resulting spec-
ifications serve as input for an automatic analysis process that is responsible for detecting
the corresponding compound events in event traces.

In spite of the fact that the framework restricts itself to events and sets of events as the
only descriptive means, it is able to describe extraordinarily complex performance prob-
lems beyond the capabilities of simple counter-based metrics prevalent in traditional tools.
Moreover, by referring only to platform-independent properties of the programming mod-
els, the approach is portable across multiple platforms.

The event traces are automatically transformed into a representation called the property-
oriented performance space. It is based on the notion of a performance property, which
describes a class of performance behavior and constitutes the first dimension of the three-
dimensional performance space. The second dimension is thecall path and describes both
a performance property’s source-code location and the execution phase during which it oc-
curs. Finally, the third dimension gives information on thedistribution of a performance
property across different processes or threads, which allows conclusions to be drawn, for
example, concerning the workload balance. A hierarchical organization of each dimension
enables the representation of performance behavior on different levels of granularity and,
in particular, pays attention to the hierarchical hardwareand software structure of paral-
lel computers withSMP nodes. Each point in the performance space is mapped onto the
corresponding fraction of execution time, allowing the convenient correlation of different
behavior along multiple dimensions using only a single view.

The EXPERT performance-tool demonstrates the usefulness of the approach taken in this
thesis. Its multilayer architecture is based on the separation of the performance-property
specifications from the actual analysis process. Every property can be accessed through
a uniform interface, which allows the extension and customization of predefined proper-
ties to meet individual (e.g., application-specific) needsand additional properties to be
automatically integrated in the overall representation ofperformance behavior. In addition,
isolating frequently used abstractions (i.e., state sequences and pointer attributes) in a sepa-
rate layer substantially simplifies the property specification. EXPERThas been successfully
applied to several real-world applications.

The main accomplishments of this work are:

• A formal characterization of complex inefficient behavior in terms of compound
events that can be automatically detected in event traces.

• Mechanisms that hide the complexity within compound event specifications and,
thus, allow a simple description of complex inefficient behavior on a high level of
abstraction.
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• A specification of common performance problems related toMPI, OpenMP, and hy-
brid applications based on this method.

• A uniform multidimensional representation of performancebehavior which provides
the ability to conveniently correlate different behavior in a single integrated view.

• A modular tool architecture which allows the set of predefined performance proper-
ties to be extended by the experienced user to meet individual needs.

Future work should focus on extending theMPI event model to include the more recent
features ofMPI 2, such as parallel fileIO, remote memory access, and dynamic process
management. Also the remaining issues of OpenMP, such as nested parallelism, should be
addressed to achieve a broader coverage of applications.

Moreover, the current set of compound events only refers to temporal relationships among
their constituents. However, since various additional metrics, such as hardware perfor-
mance counters, are easily available using performance-counter libraries, such asPCL [9],
an integration of performance counters into the event modelmight be a promising en-
hancement in view of the increasingly complex memory hierarchies present in modern
microprocessor architectures.

The degree of automation could also be increased by automatically searching the perfor-
mance space and expanding nodes of interest in the tree display.

Finally, the current shape of the performance space does notcover all possible aspects of
performance analysis. Continuing the considerations fromSection 4.7.3, a future design
might address missing aspects by adding new dimensions for:

• Time

• Application-level abstractions

• Multiple event traces

In particular, adaptive algorithms exhibit a strongly time-dependent performance behav-
ior. This could be reflected in the performance space by partitioning the execution time
into fractions associated with different execution phasesor iterations of the main loop in
the case of iterative applications. Then, it would be possible to show how performance
behavior evolves over time.

In addition, instead of only computing the distribution of performance losses across the
call tree or across different threads, it would be interesting to exploit the ideas of Shende
[69] about application-level instrumentation by extending the current scheme of an event’s
location with respect to application-level abstractions,such as simulation subdomains.

A very important and challenging extension concerns comparative analysis of different ex-
periments resulting from different execution configurations, from different input-data sets,
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or from different program versions. This could provide insight into scalability, into data-
dependent behavior, which might also influence the time-dependent behavior, and into the
effect of optimizations. Here, the particular challenge lies in the varying structure of the
remaining dimensions. For example, the call tree might change as a result of different
input data, or the set of locations will become larger when increasing the number of pro-
cesses. Future research on this specific problem might continue the work of Karanvanic
and Miller [46].
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ISBN 3-00-005746-3, February 2000, 77 pages
out of print

Modern Methods and Algorithms of Quantum Chemistry -
Proceedings, Second Edition
Johannes Grotendorst (Editor)
NIC Series Volume 3
Winterschool, 21 - 25 February 2000, Forschungszentrum Jülich
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