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Abstract

Parallel computers witlsMP nodes provide both multithreading and message passing as
their modes of parallel execution. This thesis addressesdmplexity of the performance
problems that can arise in these systems by formally charaictg the problems in terms

of execution patterns that represent situations of inefficbehavior. These patterns are
specified as compound events which are input for an autoraa#tysis process that rec-
ognizes and quantifies the inefficient behavior in evenesadechanisms that hide the
complex relationships within compound-event specificatiallow a simple description of
complex inefficient behavior on a high level of abstraction.

The analysis process automatically transforms eventgrate a scalable representation of
performance behavior, allowing a fast and easy identiboatif performance bottlenecks
on varying levels of granularity along the dimensions offgben type, call graph, and
process or thread. The uniform mapping of performance behawto the correspond-
ing fraction of execution time enables the convenient datian of different performance
behavior using only a single integrated view. A modular gsial architecture separates
the performance-problem specifications from the actudlyaisaprocess, simplifying the
extension and customization of predefined performancdgmbto meet individual (e.g.,
application-specific) needs.

To demonstrate the methodology in real parallel-programgn@nvironments, it was ap-
plied to the programming interfacesr1, OpempP, and their combination. To show the
methodology’s usefulness in practice, the performanoégmtotypeEXPERT was imple-
mented and successfully tested for several real-world@gimns.






Kurzfassung

Parallelrechner mismpP-Knoten bieten sowohl Multithreading als auch MessagesiRgs
als parallele Programmiermodelle. Diese Dissertatidw#sdehandelt die potenziel-
len Leistungsprobleme solcher Systeme mit Hilfe einer fdem Beschreibung von
Ausfuhrungsmustern, die Situationen ineffizienten Vitems reprasentieren. Die Muster
werden als Verbundereignisse spezifiziert und dienen algdbie fur einen automatischen
Analyseprozess, der das ineffiziente Verhalten in Ereggnisen nachweist und quantifi-
ziert. Mechanismen zur Kapselung komplexer Beziehungearhalb der Verbundereig-
nisspezifikationen erlauben eine einfache Beschreibungplexen ineffizienten Verhal-
tens auf hohem Abstraktionsniveau.

Der Analyseprozess transformiert Ereignisspuren auteoiatin eine skalierbare Re-
prasentation des Leistungsverhaltens, die eine schaetlesinfache Identifizierung von
Leistungsengpassen auf beliebigen Granularitatsseridang der Dimensionen Problem-
typ, Aufrufpfad, und Prozess oder Thread erlaubt. Die ethtlee Abbildung des Lei-
stungsverhaltens auf den entsprechenden Anteil der Ausfigszeit ermoglicht den muhe-
losen Vergleich unterschiedlichen Verhaltens in einerigen integrierten Darstellung.
Eine modulare Analysearchitektur separiert die Spezitkan der Leistungsprobleme
vom eigentlichen Analyseprozess, was die Erweiterung umab&sung vordefinierter Lei-
stungsprobleme an individuelle (z.B. anwendungsspeh#ijsBedurfnisse gestattet.

Zur Verwendung in realen parallelen Programmierumgeboingede dieser Ansatz auf
die Programmierschnittstellempi, OpermP und deren Kombination angewandt. Zum
Nachweis der Praxistauglichkeit wurde das LeistungsaeagrkzeugeXPERT prototy-
pisch implementiert und erfolgreich anhand realer Anweggun getestet.
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Chapter 1

Introduction

During the last few decades parallel computing has provdmktan essential tool for the
solution of complex scientific and economic problems. Thaexcal simulation of physi-
cal, chemical, and biological processes provides insightphenomena that either cannot
be addressed by analytical or experimental methods oreqatne experiments that are too
expensive or dangerous. Parallel computing also plays adkeyn achieving and preserv-
ing scientific and thus economic competitiveness. As moveepial computing resources
become available, grand-challenge applications, suchrasip-structure prediction and
weather prediction, will become reality.

A parallel computer effectively multiplies the performanaf single processors. Unfortu-
nately, real applications frequently fail to sustain evanaor fraction of the theoretical
performance limit that is possible on a given parallel maehiThe reason for this gap
between peak and real performance lies in the complex ttterss among the hardware,
system software, programming interface, and algorithndddstanding the effects of these
interactions is crucial for optimizing parallel programeahus for a better utilization of
the available computer hardware.

1.1 Architectures of Parallel Computers

Parallel computers are computers with multiple procesdwsare able to work jointly
on one or more tasks at the same time. One common way to glgssillel comput-
ers is based on memory architecture. There are two majosedashared memonrgand

distributed memory

Shared-memory machines, which are also referred teyasmetric multiprocessorsr
shared-memory multiprocess@svips) [41], have symmetric access to one shared address

1



2 CHAPTER 1. INTRODUCTION

space and are controlled by one operating-system imags mdies it possible, for exam-
ple, to suspend a process on one processor and to resumenibthreaprocessor without
copying or moving its address space.

sMps that share one physical memory belong to the classvef (Uniform Memory Ac-
ces$ computers and provide symmetric and equally fast accesdl @ddresses of the
shared address space. Examplesca&ay 190, 1BM 390,SuUN EL0000.

sMpPs that provide a shared address space based on physicatlipudesd memory [31]
have variable access times to a memory address dependirge grhysical distance to
that address. These machines are callesda (Non-Uniform Memory Accessomputers.
CCNUMA (cache coherent Non-Uniform Memory Acgessmputers are similar tRUMA
computers but provide a mechanism for local buffering of smemory contents in a
cache after the first access so that subsequent accessessamte memory location can
be much faster. Cache-coherence protocols ensure thaticatidns of cached or original
data occur consistently. Examples a@& ORIGIN 2000 andHP v-Class.

Distributed-memory parallel systems, which are oftenrrefito as asnassively parallel
processorgMPPs) when larger numbers of processors are used, do not pravstiared
address space. Each memory is local to one processor andaesséble from another
processor. Message passing is used to move data betweearsswo However, some
systems provide mechanisms to access remote memory logatiothe hardware level.
Examples arerAY T3E andiBM RS/6000-SP.

1.2 Coupled SMP Systems

In the pastmppP systems dominated the scientific computing market, buttkegned only

a minor share of the industrial market. In contrastpP systems, which are frequently
used as database servers, gained increasing populatityromsearch and industry. For
this reason, more powerful and cheapetr systems are likely to become available in the
future. However, singlesMp systems will not be able to meet the performance requiresnent
of many large-scale applications. Coupling multigleP systems is one way to increase
the number of processors and thus to provide sufficient ctingppower to handle such
large-scale high-performance problems.

Holfeld et al. [40] distinguish betwegrarallel computers witlsMP nodesandclustered
sMps. Parallel computers withMp nodes are tightly coupled over a dedicated network and
present themselves to the user as one uniform computensy8&tieisterecsMps are only
loosely coupled, for example, over a local area network.hBgpes of architecture are
calledcoupledsmp systemsBy the nature of their memory-system architecture, caliple
SMP systems are also distributed-memory systems because mésndistributed across
multiple SMP nodes.
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Hence, in contrast to singlemps, coupledsmps introduce an additional level in the
memory-hardware architecture, which now forms a hieranftdistributed shared memo-
ries. Unfortunately, this memory hierarchy further coroates the performance behavior
and makes parallel programming more difficult. While theextpd economic advantages
argue for coupledmp solutions to high-performance computing, the complex ware
structure of coupledmps creates a strong need for programming tools that provisis-as
tance in writing efficient codes for these platforms.

However, couplegmps are interesting for another reason as well. This classropoters
implements a very general architectural concept, whicliazns other architectures, such
as distributed and shared memory, and, of course, simpleeséigl architectures, as spe-
cializations. So most of the programming tools that applyaopledsmps can be used for
these subclasses, too.

1.3 Interconnection Networks

The different nodes of a couplexMpP system communicate over an interconnection net-
work. The network performance has a major influence on theatiygerformance of the
system. There are a variety of network topologies that difienode degree, network
diameter, and bisection width.

The nodes of clusteregvps are often connected withlacal-area networkLAN) or a
wide-area networwAN). In this context,LAN technologies, such as Etherneqi,
ATM, andHiPPI, which are described in more detail in [71], come into operat

In principle, LAN technologies can also be used to equip parallel computehssnvip
nodes, but in most cases these computerssyseem-area networKsANs), which have
been developed specifically to provide better bandwidth latehcy by circumventing
operating-system protocol stacks. Examples of genengdgsesANs frequently found
in thePc-cluster area are Myrinet [60] argt| (Scalable Coherent Interface) [43].

1.4 Programming Models

The choice of programming models for couplgsips is influenced by the hierarchical
memory architecture, which provides shared memory insitgles nodes and distributed
memory across different nodes. In principle, a shared addpace across aMp nodes
is technically feasible but it usually requires sophigecehardware or software solutions,
such as reflective memory [44] or TreadMarks [2], respeltive
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For this reason, the primary programming model for cou@®as is message passing
because it provides a simple way to communicate across ravdets. Inside single nodes,
programs may alternatively use tekared-memorynodel. If both message-passing and
shared-memory programming are used for a cougledprogram, itis commonly referred
to as ahybrid programming model.

A distinctive feature of the shared-memory model is thatrdvides implicit communi-
cation over shared-memory locations, whereas messagmgasgquires communication
to be made explicit using dedicated operations. Common t isathat each processor
executes different control flows, which corresponds torthatiple-instruction stream —
multiple-data streanfmMiMD ) model in Flynn’s classification [25]. Often the instructs
come from the same program, in which case the whole computaiasingle-program,
multiple-data(sPMD) computation.

The following subsections give a brief introduction to allde programming models.

1.4.1 Message Passing

Message passing is mainly used on distributed-memorytaathres. A message-passing
program runs multiple processes, where each process ovenprorate address space.
Communication among different processes takes place grégihding and receiving mes-
sages. The messages may be sent either via a network or tsiregisnemory locations
if available. Communication between two processes ocathrerawo-sidedly, where both
participating processes have to invoke an operation, osatezlly, where only one process
has to invoke an operation.

The mpPI (Message Passing Interfceommunication library [52, 53] defines a de facto
standard for message passing and is available on mostgda@thputers. The latest ver-
sion,MPI1 2.0, supports all traditional message-passing featuneh,as point-to-point com-
munication and collective communication, advanced festusuch as process topologies
and one-sided communication, but also features that gatogyere message passing, such
as parallelo.

1.4.2 Shared Memory

A shared-memory program consists of a collectiotasks which are assigned to asyn-
chronously working threads. To accomplish these taskfir@ads have access to a shared
address space. Synchronization utilizes specific meamansuch as locks and barriers, to
implement coherent control of shared-memory access.

The shared-memory programming model comes in three v@siatiNiX System V sup-
portsshared segmenta/hich provide a mechanism to define shared memory segmaahts a
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map them onto the virtual address space of different prese$dograms based treads
first create one master thread and later fork additionahtts@epending on the work to be
distributed. In this case, all threads share the same adsgipase and the programmer uses
synchronization primitives for sharing memory. The thipbeoach is sequential-program
parallelization. Here, the programmer inserts directvgzragmas that assist the compiler
in automatically parallelizing computation-intensivelecsections.

Opemvp (Open specifications for Multi Processié1, 62] is a widespread programming
interface for scientific shared-memory programming. Itrokdidirectives, pragmas, and
library calls to control the parallelization of loops andhet code sections in Fortran, C,
and C++ programs. Execution of an Opgnprogram starts with one master thread, which
creates a team of slave threads as soon as a parallel regidveda entered. After leaving
this region, the team terminates and sequential execuéisanmes. Synchronization is
accomplished either implicitly or explicitly by certainrdctives, pragmas, or library calls.
Opemnvp implementations are usually based on a low-level threadryb

1.4.3 Hybrid Model

Coupledsmp systems can be programmed using a hybrid combination ofagegsassing
and shared-memory techniques, where shared-memory iSarsgata sharing inside sin-
gle nodes and message passing is used for communicatiossatifterent nodes. Most
significant in this context is the combinationPi and Opemp. In this case, there is usu-
ally onempI process pesMpP node, and Opewp parallelization can occur in each process.
If the application needs to callpi routines from multiple threads belonging to the same
process, a thread-safee| implementation is required.

1.5 Automatic Performance Analysis

The process of investigating the performance behavior dppilication and finding the
reasons for limited performance is callpdrformance analysislt usually precedes any
modification of the source code that is intended to optimizeune the program. Both
activities form a cycle that must often be repeated manysiomtil the application delivers
the desired performance.

Performance analysis includes several complicated arel¢onsuming tasks. The devel-
oper usually compares a hypothesis of performance, whighbm#&ased on a performance
model, to objective observations of the run-time behaviordo so requires instrumenting
and monitoring the application. To draw reasonable commhssfrom the collected perfor-
mance data, the data may need several postprocessingfstegily, the developer searches
through the data, tries to (dis)prove the hypothesis, am#shtabout ways to improve the



6 CHAPTER 1. INTRODUCTION

application’s performance behavior. Clearly, performeaanalysis demands a significant
fraction of the overall time required for development ang@rapriate programming tools
could both save time and improve the quality of this process.

Although during the last few decades many achievementsliese made, the current sit-
uation still suffers from the lack of a software infrasturet that supports all these steps
in a satisfactory, automatic manner. Powerful tools, st [38], provide valuable
assistance in analyzing the performancesef and Opemp programs by visualizing the
run-time behavior and calculating statistics over theqrentince data. However, the devel-
oper is still required to filter out relevant parts from a hagsount of low-level information
and map that information onto the application-programraletibns without tool support.
Furthermore, many approaches, sucloasL [30], are compiler- or language-dependent
and, thus, restricted in their portability.

Automating the process of analyzing the performance meatasretically delivering the
information that is necessary to understand the reasonaddicient program behavior.
Thus, it aims at both reducing the amount of work that is efhe software developer and
providing information that cannot be derived manually. &rtigular, the identification of
performance problems, their classification by kind and sgyend their localization in
the source code should be addressed.

1.6 Contribution of this Thesis

The kind of performance data available has a great influendbeexpressiveness of the
performance problems that can be detected. Summary infarmas collected by profil-
ing tools, is sufficient to detect a multitude of frequenttcorring performance problems.
However, there are performance problems that are not eigibthis kind of information.
In contrast, event traces allow the reconstruction of threadyic behavior in terms of single
events and provide a more detailed view.

This thesis presents a novel approach to analyzing the mpeaface of parallel applica-
tions based on event traces. Its strength lies in its akititgllow a deeper but more
intuitive insight into performance behavior than is praddby traditional tools. This is
achieved through an automatic transformation of fine-@aibut low-level performance
data, whose analysis is time-consuming and may requireteléggning effort when based
on such tools, into a more abstract and more expressive \Geesaible through a simple
but flexible user interface.

The thesis describes the automatic transformation of dvaces into a three-dimensional
property-oriented performance space (Figure 1.1). Theosgh covers event traces that
are generated frormpi, OpemmP, or hybrid applications. Hence, it is especially well
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suited for parallel computers witMp nodes. The performance space presents the perfor-
mance behavior along three dimensions: performance ggomerde within the dynamic
call graph, and location on the machine, suclsrs node or process.

Performance

Property
Event Trace Location
Automatlc
Transformation

Call Path

Figure 1.1: Transformation of event traces into a propertgnted performance space.

The performance-property dimension describes the kindedfopmance behavior. The
call-graph dimension describes both the source-codeitorcahd the execution phase dur-
ing which a performance behavior (i.e., property) occuiaalfy, the location dimension
gives information on the distribution of performance asrdgferent processes or threads.
Each dimension is arranged in a hierarchy, which allowsépeasentation of performance
behavior on different levels of granularity and pays attanto the hierarchical hardware
and software structure of couplsaips. Each point in the representation is mapped onto
the corresponding fraction of program execution time valhg the convenient correlation
of different behavior along multiple dimensions using oalgingle integrated view.

The performance properties to be analyzed mostly refer tonoon situations resulting
from a suboptimal usage of the underlying programming maiedh as a process waiting
for a message from another process. Specification of pesgiocen properties is done in
terms ofcompound eventsomposed of simple events as recorded in the trace file. A laye
of abstraction based on the grouping of related events niakespecifications simple and
easy to extend. The resulting specifications serve as inpahfautomatic analysis process
that is responsible for detecting the corresponding comg@vents in event traces.

Characterization of performance behavior is based on caxglent patterns in conjunc-

tion with their location in a multi-dimensional structufgnis provides both a technique of

abstracting from low-level events to meaningful perforeesituations and a precise way
of associating such situations with a place in the source,cad execution phase, and a
control-flow point. Since the approach mainly refers to tregpamming model instead of

specific hardware elements, it also provides a high degrpertdibility.

To accomplish this, the thesis defines a framework for folymspecifying compound
events that characterize performance behavior on a vety Ieigel of abstraction. By
looking for such compound events in an event trace, it isiptesto prove that particular
performance problems are present in an application.
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The framework identifies two categories of abstractions sehostances provide a basis
for easily specifying compound events. The abstractiopgesent entities of the different
programming models, such ag1 collective operations or Oper parallel constructs,
and are useful for measuring their influence on performaebaWor. The resulting spec-
ifications can be easily transformed into an appropriateatiein algorithm. Examples are
shown of how the approach appliesmel, Opemvpr, and the hybrid combination of both -
the most relevant programming models for coupdenrs.

The implementation of the automatic performance oaeRT for mPI, OpemP, and hy-
brid applications proves the feasibility of this approadrhe comprehensive behavioral
classification incorporated iBXPERT explains a multitude of problems in terms of previ-
ously specified compound events. Extensibility mechanigpen the classification up to
adding new behavior classes, if the predefined ones are ffiotexut. EXPERT also offers a
display technique based on multiple tree browsers, allgwhie user to conveniently nav-
igate through the performance space. Colors assist inifgiegt performance problems
and bottlenecks, and help in investigating them on the nmmiogriate level of detail. The
trees are interconnected so that the user can view one dionemsh respect to a selection
in another dimension.

Most of the ideas contributed by this thesis apply to cougle@s in general. Unfortu-
nately, event tracing is rarely applicable to clustesatbs because it requires a level of
clock synchronization that cannot usually be provided ly ¢kass of computing environ-
ments. For this reason, parallel computers vgithe nodes are the primary target of the
approach taken in this thesis.

1.7 Document Organization

The thesis is structured in two parts. The first part is moeetétical and concentrates on
the notion of compound events as a means to describe sitgatfanefficient behavior.
The second part is more practical and deals with the designrel tool based on the
compound-event method.

Chapter 2 provides an overview of the performance analypamllel applications. After

discussing the drawbacks of traditional methods, an inicbdn to the problem of au-

tomating this task is given. Chapter 3 describes the methoading compound events to
automatically detect inefficient behavior in event traced how the method is applied to
MPI, OpemvP, and hybrid applications. The design of an automatic perésrce-tool pro-

totype based on the compound-event method is presentechiot€h?. Here, issues such
as event-trace generation, abstraction mechanisms Jizesti@n of performance behavior,
and extension mechanisms are discussed. Particular emmjmhpat on the representation
of performance behavior in a multidimensional data stmctlio demonstrate that the per-
formance problems addressed here are of practical relevamt that they can be easily
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located using the present approach, the prototype is apaifour real-world test cases in
Chapter 5. To draw a larger picture of research in the fieldtamtistinguish the approach
presented here from others, Chapter 6 contains a surveyatédevork. Finally, Chapter
7 summarizes the thesis research and comments on futureémaukomatic performance
analysis.



10

CHAPTER 1. INTRODUCTION



Chapter 2

Automatic Performance Analysis

This chapter gives an introduction to the performance amabyf parallel applications and

to the problem of automating this task. Reasons for the@xt&t of complex performance

behavior in parallel systems are reviewed. The performamiiees and bounds used to
quantify performance behavior are defined. A general mofigleoperformance analysis

process is then presented along with a survey of differamdsdf performance data used
in this process. Finally, the concept of a property-oridmterformance space is introduced
as the foundation of an automated analysis process thatvemoome some of the current
limitations in performance-analysis methods.

2.1 Complexity in Parallel Systems

The complexity in current parallel systems is a result of ititerfaces and interactions
between different functional layers:

e Application
e Parallel programming interface
e Operating system

e Hardware

The hardware of today’s modern parallel architectures ¢énesbsophisticated processor
architectures together with multi-layered memory hienaas and advanced network tech-
nologies. The operating system makes the hardware resoaccessible to applications
through mechanisms, such as process management, memoagenaent, ando. The

parallel programming interface defines the way parallelspresented to the programmer

11
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and how parallelism is enabled in the system. It comprisespders, run-time systems,
and parallel libraries including those that encapsulatepiicated communication mech-
anisms among the different processors. Finally, the agiphio itself maps structures of
the application domain to constructs of the programming@ge and the parallel pro-
gramming interface. For this reason, it may need intricata distribution strategies and
associated communication patterns. Often, the undelis@md these mutual relations
may be further complicated as a result of compiler optinzet that create a distorted
picture of the application’s source code.

In addition to the complexity within single layers of a péebsystem, there is a complexity
in the interactions among different layers. For exampleg@ion in one layer may trigger
an action in a lower layer or may be a reaction on behalf of amewccurring in a lower
layer. For this reason, there are long and interrelatedesesps of actions and their (side)
effects in parallel systems.

The complexity of single layers as well as the causal conmesbetween different layers
of parallel systems are the reason for complex performaelavior and the limited ability
of application developers to understand inefficiency inrthegrams.

2.2 Performance Indices and Bounds

Assessment of a system’s performance requires an appepreasure for drawing a com-
parison among different systems. Malony [51] identifiegghguantitative performance in-
dices for evaluating computer systermpsoductivity(i.e. throughput)responsivenegs.e.,
turnaround or response time), amilization. In the context of analyzing a parallel applica-
tion’s performance, responsiveness is the index of chaMigenever an application’s per-
formance is classified as good, it has a satisfactory regpime. For the non-interactive
applications considered here response time is equivaengcution time.

Speedugxpresses the performance of a parallel application ingefrthe time necessary
for its sequential execution. The speedup for a given nurobprocessors is defined as
the quotient of sequential and parallel execution time:

Tsequential

T

parallel (TL)

In general, the speedup can never grow more than linearlgarekd thédeal speedupf

n unless there are side effects of parallel execution. Fangia modern parallel architec-
tures with cache-based memory hierarchies can achievelisigae speedup as a result of
memory allocation effects. The paralkdficiencyprovides a measure of the actual degree
of speedup in relation to the ideal speedup:

speedup(n) =

_ speedup(n)

ef ficiency(n) = -
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Amdahl [1, 41] formulates an upper limit &peedupased on the sequential part of a
program, that is, the fraction of workloadthat cannot be divided and distributed across
multiple processors:

n

Speedup(n) = m

This is known asAmdahl’s law It implies that the best speedup that can be expected is
upper bounded by. Amdahl’s law is a fundamental relationship in paralletfpemance
analysis because it points to the central issugcafability, which characterizes the depen-
dence of performance on the number of processors and theedefyproblem parallelism.
One metric that has been proposed to quantify scalabilitiyeasize of the problem changes

is scaled speeduf34].

Paying attention to hardware utilization is sometimes nappropriate to highlight per-
formance losses. Riley and Gurd [67] derive their notionefgrmance bounds from the
hardware’s peak performance as the upper limit. In themw\performance of an appli-
cation can be judged “in terms of the resource utilizaticaciieves ... while performing
useful computation (that which is strictly necessary toredhe application problem at
hand).” Note that the restriction to useful computatiors trardware utilization to the
speedup criterion.

2.3 Performance Analysis Process

Once a parallel application is free of computational efrdsscode usually needs to be
optimized. This requires knowledge of which parts of thegoam are responsible for what
kind of inefficient behavior. Performance analysis is thecpss of identifying those parts,

exploring the reasons for their unsatisfactory perforneaaad quantifying their influence

on the overall performance. The information gained throtg$ process should suggest
measures that could be taken to tune the application.

Performance analysis and tuning form a cycle that frequdrdk to be repeated many
times until the performance reaches a satisfactory levitbrAhat, the application is ready
to run in production mode. Pancake [63] presents a concefptumaework that describes
this cycle from the application developer’s perspectivéh@ form of five questions that
must be answered to accomplish performance improvement:

1. ldentification Is there a performance problem? What are the symptoms?

2. Localization At what point in execution is performance going wrong? Wisat
causing the problem to occur?

3. Repair What about the application must be changed to fix the proBl@aerform
the repair.]
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4. Verification Did the “fix” improve the performance? [If not, optionallyndo the
repair, then go back to (2).]

5. Validatior Is there still a performance problem? [If so, return to](1).

Note that the question of when the tuning cycle should endmgrivial. How is the applica-
tion developer able to determine whether the performansatisfactory? Should the cycle
continue until the performance comes close to theoretmahlds, such as ideal speedup or
optimal hardware utilization? In practice, the cycle endewthe application developer
either runs out of time or out of ideas. Sometimes, traddwdtsveen different execution
parameters impose further constraints on the decisiontaatisfactory performance.

Malony [51] emphasizes the importance of the scientific metbf “systematic testing
of hypotheses through controlled measurement of obserydi#@nomena, analysis of col-
lected data, and modeling of empirical results” to the pssa& performance analysis and
describes it in the context of experimental computer s@erde delineates an idealized
model of a parallel-performance—evaluation environmgigf(re 2.1), which highlights the
process of successive refinement of a hypothesis aboutrpenfice behavior based on ob-
servation and accumulation of knowledge. This model is iigzd as a foundation for the
following discussion of the performance analysis procegsch corresponds to question
1 and 2 above.

Performance analysis starts with an inigrformance hypothes{g.g., too much time
used for communication) based on system and program ckasdicts, which may include
the results of any kind of static analysis. The hypothesiy tmafurther supported by
performance prediction based on runs under a differentgaraiion, simulation, or a per-
formance model of the application. Performance models ataynportant role especially
in scalability analysis.

In response to the hypothesis, the experimental perforenabservation (e.g., monitoring
communication) follows. The observation is constraineat&stain observational capabil-
ities and is usually performed with the support of programgrools. Since the run-time
behavior of an application may be influenced by several @iffeparameters, such as the
number of allocatedPus or the selected input-data set, the hypothesis also meytef
the performance as a function of one or more of these parasnétethis case, the obser-
vation may include a whole series of experiments. In additiomay be feedback driven,
that is, the performance data are analyzed online and irddutre way the experiment is
conducted.

The resultingempirical performance datare now subject to postprocessing, which may
include matching them with a performance model and makiegntlaccessible through
presentation. In this way, the data can be used to refine ¢pralie) the initial hypothesis
or contribute to thestored performance knowledge be used in later hypotheses. Of
course, hypothesis refinement includes both a more spasdlaldentification (question
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Figure 2.1: Idealized performance-analysis environmemhf51].

1) and a more specialized localization (question 2). Depgndn the results, the cycle
of hypothesis creation and observation may begin again. pfbeess ends when further
hypothesis refinement becomes impossible due to a lack opegi@rmance data.

2.4 Performance Data

Performance data associate program entities with perfuceieelated behavioral charac-
teristics. Program entities are either static or dynamar. éxample, source-code regions
are static entities, whereas instances of those regioretios pvithin the dynamic call graph
are dynamic entities. The characteristics are either i@k or quantitative. Qualitative
characterization refers to the occurrence or the orderrtdiceevents, whereas quantitative
characterization is usually achieved by relating the nurobeertain event occurrences to
intervals of program execution that represent certainamogentities.

Performance data may differ in the level of abstraction theyide both with respect
to the behavioral characteristics and with respect to tlignam entities they refer to.
Characterization may occur, for example, either in termsimiple events, such as clock
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cycles, or in terms of more complex behavior, such as lockpaiition. Program entities
may represent either simple pieces of source code or entifiehe application domain.
Observational performance data are usually generated @n aldstraction level and in a
later step may be mapped to a higher abstraction level. Upethperformance data are
calledraw performance data. The most common types of raw observapen@rmance
data areprofilesandevent traces

Each type of performance data provides a certain view of #mfopnance behavior. Usu-
ally the behavior is described along several dimensiort$) as time and location. For this
reason, the view defined by a certain type of performancevdéitiae called aperformance
space

2.4.1 Profiles

Profiles map accumulated performance metrics (e.g., nuofbdock cycles, number of
function calls, or number of cache misses) onto prograntiesti For example, a profile
may contain the fraction of execution time spent in différemctions of the program.
Typical methods for profile generation eamplingandinstrumentation

Sampling is a statistical approach of periodically obseg\the program execution under
the control of an interval timer and deriving performancenms for program parts based
on these observations. For instance,¢ne profiler gprof [24] determines the time frac-
tion spent in different functions of the program based on@anrg. Besides plain execution
times, gprof estimates the execution time of a function wtedted from a distinct caller
only. However, since the estimation is based on the numbesailtsf from this caller, it can
introduce significant inaccuracies in cases where the ¢xedime is highly dependent on
the call site.

In contrast to sampling, instrumentation inserts codectlirento the program so that the
program itself is able to trigger actions upon occurrendesedain program-level events
(e.g., function calls). For instance, thau performance-measurement framework [69,
70] provides the ability to create execution-time and haueacounter profiles based on
routine-, basic-block-, and statement-level instrumisoma

Profiles are useful to generate a rough overview of an agita performance character-
istics while introducing only limited perturbation of riumne behavior and requiring only
moderate storage.

2.4.2 Event Traces

Event traces are collections of individual run-time eveatorded during program execu-
tion. The information recorded for an event includes attl@ame stamp, the location
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(e.g., the process or node) where the event happened, aaddhitype. Depending on the
type, additional information may be supplied, such as timetion name for function-call
events. Message-event records typically contain dethisitathe current message (e.g.,
the source or destination location and the message tagydér to keep instrumentation
simple, the information included in such an event recordsigally restricted to the data
available at the location where and at the moment when th& eceurs.

Events are recorded at the point of their occurrence. Fer#dason, an application needs
instrumentation to intercept and store away the desirectsyvihat is, additional code needs
to be inserted at program locations where their occurreanée detected. To keep intru-
sion low, the event records are initially written into a mewnouffer. Upon buffer overflow
or program termination, the events are written to a file. Eweates generated indepen-
dently for each location must be merged and sorted accotditingir time stamps. Systems
that rely only on local clocks have to adjust the time stamjpls respect to chronological
displacements and clock drifts.

Limitations of event tracing may result from both the hugeoant of data being produced
and the perturbation of the program execution. This is tnygairticular when the density
of recorded events is high. Because it is difficult to predisen this will occur, instrumen-
tation has to be carried out very carefully and should bectiete that is, it should record
only a small subset of all possible events.

The advantages of event traces result from the spatial andael relationships among
individual events. This allows the reconstruction of anlegagtion’s run-time behavior and
thus can provide more detailed evidence of performancdgmub In particular, the ability
to visualize program execution using event-trace browbkaxg made tracing a widely
accepted technique especially for message-passing pnegra

For instance VAMPIR [3] (Figure 2.2) provides a flexible display for event traads
message-passing programs. Ma@PIR event model defines event types for entering and
leaving a region, for sending and receiving a message, arekézuting a collective com-
munication operationvGv [38], the next-generation ofAMPIR, is based on an extended
VAMPIR event model that supports hybrid applications as well.

2.5 Instrumentation

Instrumentation is the process of inserting extra code anfisogram to observe its ex-
ecution or performance. Often instrumentation is used tkenmaeasurements for these
purposes. Shende [69] distinguishes three dimensionsass$ifying instrumentation and
measurement:

1. How are performance measurements defined and instrumentétgonadives cho-
sen?
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Figure 2.2: Event-trace visualization usimgvPIR.

2. Whenis performance instrumentation added and/or enableddprpite time, com-
pile time, link time, run time)?

3. Wherein the program performance measurements are made (griyalad loca-
tion)?

The first question addresses the selection of phenomenadbdsved. It includes, for
example, the choice among different metrics (e.g., timeache misses).

The second question deals with the maintenance of the Use€kof abstraction. Run-
ning a program requires moving it through several transédion steps: preprocessing,
compilation, linkage, and execution or interpretationclEransformation corresponds to
a different level of representing a program’s contentsr@ugode, object code or library,
executable or byte code, and run-time image. Although eacél loffers the opportu-
nity to add instrumentation to the program, each level glesidifferent information to
be measured. In particular, the user’s abstractions magresented differently on each
level. For example, the source code allows access to laegs@ecific abstractions, which
may be hidden in the binary representation. However, binmgstyumentation of the run-
time image allows instrumentation to be carried out at raret{sometimes referred to as
dynamic instrumentatigrand thus to be controlled by feed-back, which provides an ex
cellent way of reducing intrusion. Note that both approadmay impose restrictions on
the portability either across different languages or adiferent machines.

Programs exhibit a hierarchical structure consisting &feent, often nested, elements,
such as modules, functions, and statements. The thirdignesassifies instrumentation
according to the level within the program at which the instemtation takes place, such
as function entry and exit, statement, or instruction. Taeislon on the best places for
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adding instrumentation is governed by the tradeoff betwbendemand for expressive
performance data and the desire to avoid program pertorbati

As an example, thePARI [57, 58] source-to-source translator instruments reoon-
structs on the source-code level to capture performarieear events, such as entering
a parallel region. Since Oper defines only the semantics of directives, not their imple-
mentation, there is no equally portable way of capturingéhevents on a different level.
However, becausePARI supports all languages for which Opemis defined, it is still in-
dependent of a specific programming language. As a perfaenaterfacepPARI defines
only the types of events to be observed, the selection ofrmdiion to be measured upon
their occurrence is left to the user.

In contrast, Dyninst [11] is a C++ class library for instrumiag the run-time image of
multiple processes running on the same machine. It alloe/gnertion of code snippets,
including calls to dynamically loaded modules, at functemtries and exits as well as
before and after function calls. Because Dyninst requiegthar recompiling nor restarting
the application, it is well suited for feedback-driven oliinstrumentationbPCL [16]

is a dynamic instrumentation system based on Dyninst thattégrated with a parallel
environment to provide simplified instrumentation of phaiedpplications.

The TAU [69, 70] performance-measurement framework overcomesetsteictions im-
posed by single-level instrumentation by allowing instentation at multiple levels. An
instrumentatiompP! allows the manual insertion of instrumented annotatiorie@source
code. TAU also provides automatic preprocessor-level instrumemtddy replacing calls
to library routines with instrumented ones. In additioay is able to automatically instru-
ment the source code of C, C++, and Fortran programs usingpqgaessor based on the
PDT [50] toolkit. Besides compiler-level instrumentation bdson a specific optimizing
compiler, TAU supports the interception afPi-specific events, such as message dispatch
and receipt, using an interposition wrapper, which is lthketween the application and the
original MpP1 library. Finally, instrumentation using Dyninst allowsetinsertion of extra
code at run time.

2.6 Performance Properties

Parallel applications may exhibit a large variety of diffiet performance behaviors. For
this reason, a general approach to performance analysises@ terminology that can be
used to refer to performance behavior independent of itsifspeharacteristics.

Fahringer et al. [21] propose the notionpdrformance propertie.g., load imbalance,
communication, cache misses, redundant computationy,wtich characterize a specific
performance behavior of a program and can be checked by dcmtditions. Conditions
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are associated with@nfidencevalue (between 0 and 1) indicating the reliability in prov-
ing the existence of a performance property. In additionef@ry performance property a
severitymeasure is provided, whose magnitude specifies the immartzfrthe property in
relation to other properties. Note that a performance ptgmes not necessarily denote
negative, that is, inefficient behavior.

Fahringer et al. further define@erformance problemas a performance property whose
severity exceeds a user- or tool-defined threshold. Theuemgrformance bottlenedk
defined as the most severe performance property. If theebettk is not a performance
problem, then the program’s performance is considered &cbeptable and does not re-
quire any further tuning.

On the one hand, the concept of severity helps to distindueslveen important and neg-
ligible performance problems during the performance tgmrocess. The purpose of the
severity is to map arbitrarily complex behavior onto a gahbeut simple metric, which
provides the ability to draw comparisons with respect tqatesence of very different per-
formance properties in an application. For this reasomtiien of performance properties
is a useful key concept for performance-analysis framesiork

On the other hand, severity offers only a simplified view & gerformance behavior. The
severity arranges all performance properties in a linederowith the most severe (i.e.,
the bottleneck) on top. However, it does not take into actthm various relationships,
such as specialization and generalization, that may ewising different properties. If
performance analysis were to pursue the goal of identifjnegnost worthwhile candidate
property for optimization, it might be insufficient to somfiormance properties only by
one criterion while ignoring inter-property relationsip

For example, suppose a program has two and only two simitgrepties (e.g., overhead
and synchronization overhead), of which one is more geflieealoverhead) than the other
one (i.e., synchronization overhead). Suppose also therglgoroperty’s severity is higher,

that is, it is the bottleneck. Note that the latter assunmpisonatural because the more
general property includes the other one’s behavior as aestulddthough the more gen-

eral property has a higher severity because the total osdrisebigger than the overhead
caused only by synchronization, in view of the inclusioratieinship, the more specific

property might be more interesting because it reveals muovatats causes. Therefore, an
application developer might pay more attention to this tgmseral property, in particular,

if synchronization overhead represents a major fractidh@total overhead.

Another criticism targets the definition of performancelpems in terms of a threshold
because the application or tool developer does not nedgdsare an idea of a precise and
useful threshold. Sometimes the developer just wants tadspeertain amount of time on
optimization and tries to make the best achievements pedsilthat time. This might be
another reason to look for more specific performance prigsebiecause their causes are
more obvious compared to more general ones.
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Finally, as already anticipated by Fahringer et al., thdgoerance behavior is actually
multi-dimensional. Fahringer and et al. express this inrtharameterization of perfor-
mance properties, which allows the consideration of a ptgpéth respect to only a spe-
cific source-code region or function call. Regarding thesameters as further dimensions
leads to a very general representation of performance bwhav

A property-oriented performance spaisedefined as a multi-dimensional space with the
performance property as its first dimension. The other dsiwers represent static or dy-
namic entities related to an aspect of program executiomfarpgance property may refer
to. The definition of the remaining dimensions is very gehand may include parts of the
source code, dynamic run-time objects, or intervals of #eeetion time. The performance
behavior in such a space is represented by data indicatrextient (i.e., severity) to which
a certain performance property is present with respecttitiesnof the other dimensions.
For example, a program may spend five percent of the overatigion time on a property
synchronization overhead functionfoo on proceszera Here, propertysynchronization
overhead functionfoo, and procesgeroare coordinates of a point in a property-oriented
performance space, and the severity of that point is givdivapercent. Similar to map-
ping single points onto a severity, it is possible to map eé{®ints onto a severity. For
example, instead of considering the synchronization tiorefdnctionfoo, it should be
possible to consider the synchronization time for the wipotggram. Thus, the severity is
a mapping that maps a subset of the performance space ontaaxiowalue that makes
it comparable to other subsets. The advantage of a propadgted performance space is
that it provides the ability to represent performance bairalong multiple dimensions in

a data structure that is independent of the semantics offgpgerformance properties. In
addition, the mapping of whole subsets instead of singletpanto a severity value allows
performance analysis on varying levels of detail.

In this mannerperformance problemandperformance bottleneclksn be considered as
subsets of the performance space that are mapped onto advigiitys and a very high
severity, respectively. Of course, they are typically agged with a negative performance
property, that is, one that denotes inefficient behavior.

Note that this characterization of both terms clearly i=fe@t only to a class of behavior but
also to the program entities that behavior is associatdu Wwitthe example above, the syn-
chronization time in functiofioo and procesgeromight be considered as a performance
problem. In addition, this characterization is very flegiblecause it allows inter-property
relationships to be taken into account and a problem to bgzadhin the context of a more
general problem.
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2.7 Automatic Performance Analysis

Automating the process of performance analysis requiresdehof the expected results
of that process. In general, automation of performanceyaisamay cover all activities
involved in that process. Riley and Gurd [67] roughly divitese into two categories:

e Gathering of data

e Search process

They describe the search process based on the notion ofiparfoe properties as a “sys-
tematic examination of performance data gathered for aficapipn in order to identify
performance properties in relation to regions of the apfiic source code.” The search
process requires the performance properties to be definedns of conditions referring
to performance data and includes query formulation andugieet The gathering of the
necessary data requires experiment planning and exeauoagement of instrumented
runs of the program.

Justification for the above distinction can be found in thiéedence between raw (i.e.,
low-level) performance data and high-level performande tfzat present the performance
behavior on a higher level of abstraction. The nature of raigpmance data is determined
by the nature of common monitoring techniques, which ugwgdther data in the form of
profiles or event traces. Traditional performance toolpsughe search process mainly by
providing low-level views of these performance data typesese views typically include
textual or graphical - often interactive - displays, suchiaddes or bar charts of profiling
information, time-line diagrams of event traces, and stigil analyses. The following
tools exemplify common techniques of presenting profileserent traces to the user.

The Apprentice [14] performance tool visualizes executiare profiles of message-
passing programs on tle&RAY T3E in the form of bar-chart views (Figure 2.3). Apprentice
shows time profiles on the program, routine, and basic-blee&l. Each bar is divided
into sections by the use of a different color indicating dedént type of activity, such as
parallel processing, communication overheadpoiStarting from an arbitrary activity bar,
the user can navigate through the call graph in both direstad a calling relationship to
obtain profile information on subroutines as well as caéisit

Xprofiler [42] is graphical front end for theNu gprof profiler [24] with the ability to
present gprof output as a call-graph diagram (Figure 2.4xhEhode is displayed as rect-
angle, whose width and height represent the execution ticleding and excluding called
routines, respectively. The arcs are labeled with the nurab#mes a node was visited.
In addition to the call-graph view, an annotated sourcescgdw displays profiles for in-
dividual source lines.

VAMPIR [3] visualizes event traces of message-passing programnstidoying a time line
for each process (Figure 2.2) indicating its current exeoudtate by color. Arrows point-
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Figure 2.3: Apprentice profile browser.

ing from one time line to another time line represent potpbint messages sent between
processes, whereas connected lines covering multiplegses indicate collective commu-
nication. VAMPIR’S zooming capability allows the user to examine the ruretimehavior
on an arbitrary level of temporal granularity. In additiendicking on single items in the
representation to obtain more detailed information, ther ean look at statistics for the
interval displayed.

The drawbacks of these low-level views are manifold. Fits¢, user is confronted with

a potentially large amount of data, which has to be searchauuaily for the presence
of performance properties. This often includes manual @mpn of different aspects of
program behavior displayed in different unrelated viewscdhd, the views provided by
current tools usually present program behavior in term®wflevel metrics that do not

help the user in deciding whether performance improvensgmbssible, how performance
can be improved, and whether an optimization effort would/beh the investment. Third,

as a result of the multitude of different view options offéley some tools, a lot of training

may be necessary before a tool can provide valuable assgstaperformance analysis.

The search process as specified by Riley and Gurd descritssérmation of raw perfor-
mance data into a two-dimensional performance space asipesihce property by source-
code region. The difference between this performance spagdow-level views is the
characterization of performance behavior in terms of albsperformance properties that
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Figure 2.4: Xprofiler call-graph diagram.

explain misbehavior on a higher level of abstraction.

However, there is no logical reason to restrict the perforreaspace to only two dimen-
sions. For example, the performance of a function might ke paly when called from
a distinct caller or at a distinct location (e.g., procesaanle); or a performance property
may evolve over time as the application moves among diffeeecution phases. There-
fore, it might be reasonable to consider the dynamic calplgrar the execution phase
as additional dimensions. In general, the search procesbeacgarded as the transfor-
mation of raw performance data into a general multi-dimamel high-level performance
space that may be made up of various dimensions dependirtteqrutpose of the anal-
ysis. Note that if raw performance data is thought of as be#pgesented in a low-level
performance space, the search process can be regardedrsfartnation from a low-level
space into a high-level space.

This thesis regards the automatic search process as anaigdransformation of low-
level performance data into a multi-dimensional propentignted performance space. The
benefit of this viewpoint is a more general model of perforogabehavior that is able to
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take into account the state of the program at the time a spguafiformance property is
present. This may provide a better understanding of theopditions that lead to a certain
kind of behavior.
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Chapter 3

Specification of Performance Behavior

This chapter presents a novel approach to analyzing pesfacenproperties of parallel ap-
plications based on event traces. It defines a frameworlofandlly specifying compound
events that characterize performance-relevant behauerframework allows the creation
of abstract building blocks that represent concepts of tidetlying programming model
and therefore provide an easy means to specify complex cantpevents representing
inefficient behavior. Using these specifications, it is jf@ego automatically locate ineffi-
ciencies in parallel applications by looking for occurresof the corresponding compound
events in event traces. This will be demonstratedfer, Opemp, and their combination.
Finally, to show that the approach is also suitable for eggberformance-analysis frame-
works, extensions are proposed to integrate it k80 (APART Specification Language), a
language for the formal specification of general perfornegmroperties.

3.1 Rationale

Effective automatic performance analysis requires formathods for specifying perfor-

mance properties that characterize a specific performagitavior. The strength of spec-
ifying inefficient behavior in terms of compound events ssénom its ability to describe

the behavior on a high level of abstraction directly relatedhe programming model.

The resulting specifications can then serve as a basis frpence tools that are able
to prove the presence of complex performance propertieparallel application without

user intervention.

The kind of performance data available has a great influencthe expressiveness of
the performance properties that can be defined. Summarymat®mn, as collected by
profiling tools, is sufficient to describe a multitude of fustly occurring performance
properties. However, there are performance propertigsatteanot visible in this kind

27
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of information. A more detailed view of a parallel applicatis behavior can be gained
by using event traces because event traces preserve tied apdttemporal relationships
among individual events, allowing the reconstruction oédpplication’s dynamic behavior.
By looking for compound events in an event trace, it is pdedib prove that particular
performance properties are present in an application.

A compound evemepresenting a performance property is a set of primitiengs; which
are called itgonstituentsCompound events that relate to the programming model expos
complex relationships among their constituents refledtiegr model-relevant actions. For
instance, sending a message and receiving it are interctathby a relationship derived
from the message-passing programming model. Becauseaonagng models differ in
their operational semantics, it is difficult to devise a gahtormal representation of com-
pound events that is powerful enough to express the complapound events across all
programming models.

To overcome this problem, the thesis identifies two categaof abstractions that can be
used to provide programming-model-specific building b&akn top of which a general
specification of compound events is possible. The abstratepresent entities of the dif-
ferent programming models, suchmasi collective operations or Operp parallel-region
constructs, and are useful for measuring their influence esfopnance behavior. The
resulting specifications can be easily transformed intopgmapriate detection algorithm.

3.2 System Observation Based on Events

Because a computer changes its state in discrete internea)x(ock cycles), it is possible
to model the dynamic behavior of any program execution agjaesee of atomic actions.
The finest temporal granularity of actions happening in aater system is a clock cycle.
However, in practice, measuring the time of each action lityveoe requires several clock
cycles. Thus, the temporal resolution of atomic actionsdha be observed is much lower.

An event characterizes an atomic action happening at andistication and at a distinct
point in time. It is the smallest entity that can constitute tlynamic view of a parallel
application. However, performance analysis is frequeintigrested in non-atomic activ-
ities (e.g., sending a message), which require a set of temharacterize them. Often
a non-atomic activity is described in terms of its start od events, which can usually
be associated with a distinct point in time. The locationmkaent is determined by the
location of the control flow causing the associated chandlkedrstate. The location of an
event may be logical or physical (e.g., a process ©p@, respectively).

Event tracing regards the execution of a program as a seguaEnevents representing
actions relevant to the purpose of the observation. Theretbe selection of event types
to be observed defines the view of program execution an esaar@ tan provide. Aevent
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modeldefines the formal properties of that view. It comprises aéetent types with an
associated set of attributes and constraints definingdawent ordering.

An event type is defined by a set of attributes. In most cabese tare event types that
share a subset of their attributes. For this reason, it igazoant to create a type hierarchy
containing concrete event types derived from abstracttdypes that isolate commonal-
ities. In the following, concrete event types are writtersinall Roman letters, whereas
abstract event types are written in small italics.

Each event traced has a locatibr (e.g., thempi process) as well as a wall-clock time
stamptime. It is useful to define an abstract event typentconstituting the root of the

type hierarchy. All event types are derived fr@vent The set of locations involved in an
event trace is called.

An event type is defined by a set of attributds, ..., a,, }. A subset of these attributes
may be associated with more general base types. Subsequeathotatiore.attr is used

to refer to an attributettr of an event. Table 3.1 summarizes all event attributes used in
this document, including those that will be introduced iretasections when dealing with
parallel programming models.

Table 3.1: Summary of event attributes.

Attribute | Description

cedgeptr | least recenEnterevent visiting the preceding call path
cnodeptr | least recenknterevent visiting the same call path
csite call site

enterptr | Enterevent of the enclosing region instance

loc location

reg region

time time stamp

MPI

com communicator

dest destination location of a message

len message length

recvd bytes received during a collective operation
root root location of a collective operation

sendptr | Sendevent to a giverReceiveevent

sent bytes sent during a collective operation

sre source location of a message

tag message tag

Opemnp

lock a lock object used for synchronization

lockptr | Syncevent that performed the last change of a lock’s ownershipst
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Definition 3.1 (Event Trace). An event traceis a finite indexed set of event® :=
{e1,..., e, }. The indexing reflects the time-sequenced order of eventadsadn the trace
file:

1. 1<3 = eptime <ejtime
2. 1<j N e.loc=ejloc = e.time <ejlime

Also, the indexing defines a linear order
V 1<4,5,<n.: i<j & ¢<eg
&

The conditions require the events to be in chronologicaéoahd allow only events at
different locations to happen simultaneously. Dependmthe programming model being
used by an application, there may be additional constrastsell.

In the following, the abbreviatioi’; denotes those events of an event tracthat are of
typet:

E,:={e€ E| type(e) =t}

3.3 Event-Model Enhancement

To be able to express complex relationships among the toests of a compound event,
the event model of system observation can be extended byng@astances of two differ-
ent categories of abstractions:

e State sequences

e Pointer attributes

The process of creating event abstractions from a giventewedel is calledevent-model
enhancementThe resulting model is called tlehanced event modédlo distinguish the
original model from the enhanced model, the original mosleéiled théasic event model
State sequences and pointer attributes are formally deiiméte following subsections.
Concrete examples can be found in Sections 3.4, 3.5, and 3.6.

The concepts of state sequences and pointer attributesprevmusly used by the au-
thor to design the initial version of theARL trace-analysis language [75], which targeted
the analysis of point-to-point communication in messagesmg programs. This chap-
ter provides both a generalization and a refinement of thesseepts and a much broader
event-analysis coverage, including! collective communication, Operp, hybrid pro-
gramming, and call-path analysis.



3.3. EVENT-MODEL ENHANCEMENT 31

3.3.1 State Sequences

Compound events representing performance properties ettabit some form of locality
within the event trace. That is, the constituents of suchnapmund event are not arbitrary
subsets of the trace, but share some context. This contegpissented by the state of
the parallel system at the time when the compound event scbumost cases, this state
refers to a set of ongoing activities in contrast to actxgtihat are already finished.

An event happening in a parallel system indicates a changg $tate, thus events can be
regarded as state transitions. An event trace can be seesegsience of state transitions
starting at an initial state and changing into the next statent by event, until a final
state is reached after the last event. The state entere@ assihlt of an event is a useful
abstraction when specifying compound events that reptrasefficient behavior.

The overall state of a parallel system is characterized figrdnt aspects. For example,
one aspect might be the set of messages being transferregiaramoment, another
aspect might be the dynamic call stack of a process or thi®adh a state aspect can be
conveniently characterized in terms of the events thatezhtisat aspect’s state. Thus, it
becomes possible to describe state information using omdgte and sets of events. For
example, the set of messages being transferred at a giveremaan be represented by
the set of send events of these messages, and the dynanstack&lcan be represented by
the set of function-call events.

Model enhancement defines for each of theses aspeatideasequencdiat describes the
evolution of that aspect over time. Corresponding elemehtsl state sequences (i.e.,
those that correspond to the same event) form a vector, vigicalled theoverall state
The evolution of the overall state over time is described lweetor of state sequences,
which is called theoverall state sequenceA state sequence is inductively defined by a
transition operator. The transition operator is applietht current overall state and the
next event to compute the next state in the sequence and,amast of the next over-
all state. Note that computing the next state from the pregedverall state allows the
definition of relationships across different state seqasnc

Definition 3.2 (State Sequence)A state sequence of an event tracé’ = {e;,... e, }
Is a finite indexed set of subsets Bf

6={60,...,6,}

& is called thanitial stateof ¢ and is always the empty ses, - is called astateof the
evente; and does not contain any events happening laterdhan

60 Z:®
6 C {e€E| e<e}, 1<i<n,
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The vector of alktate sequencetefined for an enhanced event model is calledbtrerall
state sequence

&= (&"...,6™)

The vector of all states with indexs called theoverall state:

—

S =(&),...,8"), 0<i<n,

Thus, a state’ describes the aspegtafter the occurrence of eveat The union of all

states with index contains all events that are part of the overall state. lalked theflat
overall statel’;:

= |J ef 0<i<n,
ke{l,...,ns}

A state sequenag’ (i.e., an aspect of the overall state) is inductively defimgd transition
operators’. A transition operator is applied to an eventand the previous overall state
&;_1 to compute the statg’.

6% = 0
(‘55 = 5j(el-,éi,1), 1§z§ne (31)

A transition operator is defined by a set of transition fumesis’, one for each event type
t. If e; in (3.1) is an event of type thens! is computed using the transition function for

typet:
sj(el-, éifl) = 5{(62‘, (‘_5’1;1), if type(ez) = t, 1 S 7 S Ne (32)

If there is no explicitly defined transition function for amemt typet, s/ is assumed to
leave the state unchanged (i.e., to be the identity fungtidrtransition function defined
for an abstract base event type covers all derived evens typetransition operator defines
several transition functions defined along a path in the hygearchy, they are all applied in
the order defined by inheritance starting with the most gdrigpe. That is, the transition
function effectively applied is a composition of all thensition functions defined along
the path ranging from the root to the type of the current evieat example, consider two
typesb andd, whered is a descendant d@f If there are two transition functiong ands,
ande; is an event of typé, then:
é;fl = (6?71, e ,5{;(62‘, éi—l)a ey 6?_’1)

Gg = Sgl<€i7 é;—l)
A transition functions] may add or remove events from a state. An event added tp
must be an element of the (flat) overall stBte; or it must bee; itself. It follows that the
range ofG{ is limited in the following way:

6Z Q Fi—l U {62‘}, 1 S 1 S Te (33)

o
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State sequences are abstractions used to provide corftaxhation for the constituents of
a compound event. They separate activities that are stillggan with respect to a certain
point in time from activities that are already completedhwigspect to that point in time.
As will be shown later, state sequences are especially lukefaepresent abstractions of
the different programming models.

The flat overall stat€; of a given event; contains all the events that are related to activities
that are still going on. As will be explained later, the flaeoall state plays an important
role when implementing an enhanced model.

3.3.2 Pointer Attributes

Another useful abstraction is a link connecting relatednéyeso that one can navigate
from one event to another related event. An example is a tmk the event of receiving a
message back to the corresponding event of sending it. Téakamism permits navigation
along a path of related events and the definition of relakigmssamong the constituents
of a compound event using such paths. A natural way of reptiesesuch links is to
provide event attributes with pointer semantics. Pointigibaites are the second category
of abstractions considered here. They are added to thbué#si{a,...,a,,} already
defined in the basic model for an event type

Definition 3.3 (Pointer Attribute). A pointer attributeptr is a mapping that maps an
event of a particular typefrom an event tracé& onto a non-future event fromfa’:

ptr: By — EU{null}

e; +— e.ptr

The pointer attributetr of an event; is defined as a function of the attributes. . ., a,,
defined in the basic model forand the preceding overall stage ;. Its range is limited to
e; and the previous flat overall stafe ;:

—

e;.ptr = fur(eiar, ..., €.0n,,6;_1) (3.4)
ei.ptr € T, U{e;,null}

<

To indicate the absence of a meaningful event, a pointebatiérmay carry thewull value

in certain situations. Pointer attributes depend on thiéates defined in the basic model
and on the overall state immediately before the event unatesideration. Also, similar to
state sequences, the range of pointer attributes is linotedand the previous flat overall
statel’;_; if they are nothull. From this it follows that pointer attributes never point to
future events. Note that the functigi, may refer to pointer attributes of previous events
includingptr itself.
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Note that it is possible to use pointer attributes in statguence definitions in the same
way that state sequences are used in pointer-attributeitaefs) that is, using a pointer
attributee;.ptr to define a state,;. Sincee;.ptr may be defined only using the overall state
&,_1 and, in additiony0 < j < n, : 6% = (), it is ensured thas; is still well defined.

3.3.3 Implementation of an Enhanced Model

The calculation of both state sequences and pointer atsboccurs inductively. That
is, starting from&, = (0,...,0), an implementation of a model computes the pointer
attributes ofe;. After that, it calculatess;, and, in a next step, the pointer attributes
associated witl, and so forth.

To simplify an implementation, the model-enhancement &a&ork requires that it is possi-
ble to compute both the overall state and pointer attriboftes event; without accessing
any events other than itself and those contained in the flat overall state preacgdinthat
is without accessing any events other than, U {e;}.

Definition 3.4 (Working Set). Theworking setA; of an eveng; is the union of the pre-
ceding flat overall state and the event itself:

Az’ = Fl',l U {61}
<

The name “working set” is used to refer to locality. That isgach step an implementa-
tion only needs to remember a small sub&etC F, since all functions involved in these
calculations refer at most to the current event and the dva&ede immediately prior to
that event. This is a very important property of the framdwmecause it allows a tool to
sequentially traverse the trace file from the beginning #oehd, and to compute all the
abstractions (i.e., state sequences and pointer attsisméely based on a subset of events
to which not more than one event can be added at every steph&lps to avoid expensive
file accesses that would otherwise become necessary if thieWle was needed for every
computation. Although this requirement limits the abilibydefine fully general abstrac-
tions, it is not a hard restriction because it excludes omgnes belonging to activities that
have already been completed and therefore are usuallylatgdeo an event’s context.

The working-set requirement has already been anticipatetddefinition templates for
state-transition functions (3.1 - 3.2) and pointer attiéisu(3.4) because both templates
refer only to structures containing elements of the worlsgety Note that, when calculating
abstractions for an event, pointer-attribute values calcdmpared and copied without
accessing the events they point to because pointer adslounly need to carry references
to these events instead of the events themselves. Usingeheiadex as a reference even
allows a comparison with respect to the relative positiotninithe trace file.
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The concept of model enhancement is not only a convenieffiiodéor defining compound
events. Since the locality exhibited by compound eventspio#ed through restricting the
potential event accesses to the working set when calcglatistractions, it also provides
a foundation for efficient search methods to detect comp@wett instances in an event
trace.

Sections 3.4 and 3.5 exemplify the concept of model enhaeceby applying it tovPI
and OpemP. In both cases, a basic event model is developed and thenasthby adding
instances of the two categories of abstractions. Findily,ttvo models are merged into
one single model to describe hybrid applications in Sec@ién

3.4 Model Enhancement: MPI

The MPI message-passing communication library specifies commatioicoperations to

be explicitly invoked by an application to exchange messagaong processes. The li-
brary provides operations for point-to-point and operaior collective communication

involving more than two processes.

The current event model, which is covered in this sectioesdwt yet address the advanced
features which are included in the latest versiomef, MpI 2 [53]. To give an overview, a
brief discussion of these features follows in Section 3.4.3

3.4.1 Basic Event Model

The execution of amP1 application involves a set of locations at which events nappen.

To keep the model simple, the location of an event occurringnd execution of ampi
application is defined as the triggerimg! process, which can be described using the rank
in MPI_COMM_WORLD. Thus, the location is a number from:= P = {0,...,n, — 1},
wheren, is the total number of processes.

The static view of ampPI application comprises a set of regions. A region is a codiosec

of a parallel program. It may be a function, a loop, or just sibalock. One execution of

a region forms a region instance. It is assumed that a reg&tance may be exited only
after all enclosed region instances have been exited,ghtkta entries and exits of region
instances occurring at the same location form a correchpiagsis expression.

The event typeEnterandexit indicate that a code region has been entered or exited,aespe
tively. They both are derived from the same abstract baseRygionEventhat provides a
region attribute-eg which denotes the region entered or left. In additinerevents carry
an attributecsite, which gives information on the source-code location (tlee call site)
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from which the new region is entered. Note that transiticgtsveen regions, such as enter-
ing a loop, do not necessarily involve function calls. Irstbase, the call site is just the last
location of the source region that has been executed beafiteeg the destination region.
Note that providing call-site information requires instrentation of call sites.

Since sending and receiving point-to-point messages &ikati@s that can be easily sepa-
rated from their triggering functions, the event tyjgesdandReceiverepresent the message
dispatch and the message receipt, respectigehdprovides an attributéest for the mes-
sage’s destination location, aRkceiveprovides an attributerc for the message’s source
location. Of course, sending and receiving a message aratoomc activities that may
take a while. For this reason,sendevent denotes only the start of sending a message,
whereas &Receiveevent denotes the end of receiving a message. This ensatesSdnd
event never occurs after the correspondageiveevent. Note that the duration that can be
derived from both events of a message is the most pessiragtination.

The message properties themselves are accommodated inseacalbase event type
MsgEvent which has attributes containing the messagettag the communicatorom,

and the message lengtn. Usually, events of these types are placed in betweegrtiee
andExit events of the correspondingp! routine. As already mentioned, message events
are constrained in their order within the event trace suahdlsendnever occurs after its
matchingReceive

Modeling MPI collective operations is more involved because here twiergifit aspects
are linked very closely. First, a collective operation ig@xed in parallel on different
locations. That is to say, a collective-operation instas@etually a set of single region in-
stances. Second, a collective operation involves comnatiait, but the detailed structure
of this communication is usually hidden behind thel implementatiort. This makes it
difficult to explicitly model the communication events ocgng. Therefore, a hybrid event
typeMPICExit denotes the exit of a collective operation. It is derivedrfigxit and also pro-
vides attributes characterizing the collective commuioca These attributes include the
number of bytes sentnt from the event's location and the number of bytes and redeive
recvd by the event’s location, the root location of the collectogerationroot, if there is
any, and the communicatesm. The communicator can be considered as a link connect-
ing the single region instances that constitute a wholectlle-operation instance. This is
because it determines the set of locations involved in thatation instance. So for each
participating location (i.e., each location in the comnuadr’'s group of processes), the
call of anmPI collective operation results in @mterevent for calling it and in amPICEXxit
event for leaving it.

The complete type hierarchy is depicted in Figure 3.1 usimg [10] notation. For conve-
nience, full attribute names are used in the figure. Noteithatder to keep the hierarchy

Pure barrier synchronization is considered as a special @@anmpPI collective operation where the
amount of data transferred is zero.
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tree simple, the hybrid nature BPICExitis not expressed explicitly by multiple inheritance
relationships.

Event

location
time

T

RegionEvent Ms/gEvent
region tag
communicator
length
Enter | Exit | Send Receive
call site ZF destination source
MPICEXit

communicator
root

sent

received

Figure 3.1: Basic event model ferP1 applications. Hatched boxes represent-specific
event types.

The communicator connects the different events making ujn@encollective-operation
instance because it defines the group of locations execthiginstance. C' denotes
the set of all communicators created during program exacutiThe groupGroup(c)
of a communicator: € C'is a subsetGroup(c) C L of the set of all locations so that
Group(MPI_COMM_WORLD) is equal toL.

Note that this model can be implemented using very simpleungentation technology,
such asvipi interposition libraries.

3.4.2 Enhancement

This subsection describes simple abstractions that carsée to specify performance-
relevant compound events occurringmirl applications. The event type hierarchy moti-
vates the description of the activities performed byvan application at a given moment
in terms of three different higher-level concepts:

¢ Region instances
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e Messages
e Collective-operation instances

First, it is shown that state sequences are a suitable mealestribe the set of currently
active region instances and message transfers. Aftenttisatiemonstrated that this is also
true for collective-operation instances. In addition,rer attributes prove to be a handy
instrument to link the single events constituting (colile) region instances and messages
together. As a prerequisite, three auxiliary functionscsned.

Definition 3.5. Let ' C F be a subset of the event trace dnd L. a location:

mostrent(F) = {ee F| —-3f € F: f.time > e.time}
leastrent(F) = {e€ F| —3f € F: f.time < e.time}
haveloc(F,l) = {e€ F| e.loc=1}

O

The first two functions return those events from a set of eventhat happened most or
least recentlyhaveloc() returns the events that have a specific location. For coeweri
the set of events returned by these functions is allowed tdzetreated as a single event
if the returned set contains exactly one unambiguous elemen

State Sequences
The region instances being executed at a certain momentecaadily represented by the
set ofEnterevents that determine their beginnings.

Definition 3.6 (Region Stack).Theregion stackr' of a location/ € L is a state sequence
that collects the&nterevents of active region instances at locatiofts transition operator
¢ is defined by the following transition functions:

R U et if eiloc=1

I !
t DR, =
Fter ' R, else
I ! i _
; o M, , \ mostrent(R;_,) if eloc=1
Ewit : Sti T l
R, else

<&

The first functiont),,,.,. is responsible for addingnter events representing active region
instances to the region stack and the second funetign is responsible for removing
them from the region stack as soon as the correspondingretggtances are completed.

The messages currently being transferred are best chézadtby the set of their respec-
tive Sendevents.



3.4. MODEL ENHANCEMENT: MPI 39

Definition 3.7 (Message Queue)Themessage queua*? of a pair of locations;, d € L
IS a state sequence that collects Headevents of messages underway freno d. Its
transition operatorn® is defined by the following transition functions:

od Csd mih U{e} if elloc=s A e.dest=d
MSend : g‘ni T s,d
m, else
sd L gusd >\ {e;} if ensrce=s A eloc=d
Receive 7 Snffll else

where ¢, := leastrent({e € P |  etag =e;tag A e.com = e;.com})

<

The first functionm?? , addssendevents of messages that have just been sent, and the

second functiom?;’. . removessendevents of messages that have just been received. This
means that the set of messages currently being transfereddays up to date. Matching
SendandReceiveevents is done using the standarei-messaging semantics (pp. 30-34 of
[52]), which requires thesendevent of a giverrReceiveevent to be the least recent event
with matching tag and communicator in the message queueafifictfrom the message’s

source location to its destination location (i.e., the tamaof theReceiveevent).

The events involved in collective operations form anothas< of related events that are
important in the context afiPI performance properties. A complete collective-operation
instance is depicted in Figure 3.2. The figure shows the tineslof all locations (i.e.,
processes) that are involved in this instance as well agrtteelines of two locations that
are not involved. The involved locations together form theugp that is associated with
the communicator of the operation call. This group is a subfall possible locationg..
Entering and leaving the correspondimgl function are represented IgyiterandMPICExit
events. An explanation of the arrows pointing from the righthe left follows later.

A

el 0 e ‘ Enter
-% - & @ MPICExit
: - 0
o i
®———————- 0
_ _enterpr

time

Figure 3.2: AnMPI collective-operation instance.
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Capturing the events belonging to a collective-operatistance can be done by defining
an appropriate state sequence for each communicator. Bieitlaa is to accumulate the
MPICExit events belonging to a collective-operation instance @atitikvents belonging to
that instance have been collected. After completion theesponding events can be re-
moved. This idea exploits the fact that the collective-aien instances executed within
the same communicator are never interleaved, that is,ativideoperations must be exe-
cuted in the same order by all members of the communicatooigy

Definition 3.8 (Collective-Operation Queue).The collective-operation queue® of an

MPI communicatore € C'is a state sequence that collects MrCExit events of active
collective-operation instances of the communicatolts transition operatot is defined
by the following transition functions:

¢, U{et if ecom=c

MvprcEsit ¢ G = o olse
i—1
. € ¢\ Inst if VI e Group(c): |haveloc(€5_1,1)| > 1
c Doe =
FEvent 1 ;—2_1 else
where Inst:= |J leastrent(haveloc(€ ,1))
leGroup(c)

o

An MPICExit event is added ta$_, by applying the functionr§, s, .. if ¢ is the com-
municator of thevPICExit event ¢;.com = c¢). After all MPICExit events belonging to a
collective-operation instance have become elements,dhey are removed by applying

c
CEvent*

Note thatEventis more general thamPICExit, which has an important effect on the order in
which the two functions are applieel;, .., is always applied befor€, » ;- 5.... When the
last event; of a collective-operation instance is reached,,,, is applied first. However,
at this moment, the last event has not yet become pagt 8b thatc,, ., is without any
effect. After thats§, ;o 5.0 1S @pplied and; is added ta. Now, the complete instance is
a subset o€ and the condition ir%,.,,, allowing the removal of this instance is satisfied.
Finally, after proceeding to the next evexit,. ., is applied again and the complete instance
Is removed.

To access the events belonging to a collective-operatgiamte, another auxiliary function
is defined that can be used to isolate these events.
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Definition 3.9 (mpicoll()). Lete € E be an event from the event trace:

Inst if type(e) = MPICExit A
mpicoll(e) = Vi € Group(e.com) :  |haveloc(€i™ )| > 1
0 else

where Inst := U leastrent(haveloc(€5<™ 1))
leGroup(e.com)

<

If e is an MPICExit event that completes a collective-operation instance) thgicoll()
returns allMPICExit events belonging to that instance. Otherwise the emptgseturned.
How to access the correspondibgter events will be explained later when dealing with
pointer attributes.

Enhancing the model in this way means considering a coliecperation essentially as
a set of single region instances. This viewpoint has thergdge that it allows Opeup
parallel constructs to be treated in a similar way. Thusiavjales a very general idea of a
collective operation.

Pointer Attributes

Both region instances and messages can be representedrdypaiatching events. A
region instance is characterized byHtgerandExit events, and a message is characterized
by its SendandReceiveevents. For this reason, it would be reasonable to provig&ka&on-
necting both sides of each pair; that is to say, a link fromethigevent to its corresponding
Enterevent and a link from theeceiveevent to its correspondirgendevent. The direction
of these links follows Definition 3.3, which prohibits linkom pointing into the future.
However, the relationship connecting axit event with its matchingnterevent is actually
a specialization of a general relationship between anrarievent and theénterevent of
the region instance enclosing it. Therefore, a link showldnect an arbitrary event with
theEnterevent of its enclosing region instance; that is, with thenétlegat was “at the top” of
the region stack immediately before the event happened fdllogving pointer attributes
are defined using conditions that are similar to those ajreadd for the definition of state
sequences.

Definition 3.10 (enterptr). The enterptr attribute is a pointer attribute for an arbitrary
evente; € E that points to th&nterevent of the region instance in which the everniook
place:

mostrent(REWE) if werlec £ ()

e;.enterptr =
null else
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Definition 3.11 (sendptr). The sendptr attribute is a pointer attribute forReceiveevent
e; € FEreceive that points to its correspondirggndevent:

e;.sre,e;.loc |

e;.sendptr ;= leastrent({e € M7 etag =e;tag AN e.com = e;.com})

<

The correspondingendevent is the least recent event with matching tag and contauni
tor in the message queue for traffic from the message’s sdocaéion to its destination
location, that is, the location of tireceiveevent.

The meaning of these pointer attributes is illustrated iguFe 3.3. Here, events taking
place at two different locations are shown along their timed. The upper location per-
forms two nested region instances. During the inner regiatance (indicated by the
dark-gray bar) a message is sent to the lower location.

The auxiliary functionnpicoll() (Definition 3.9) delivers alMPICExit events belonging to
the same collective-operation instance. Eherevents of that instance can be accessed by
following the enterptrattributes originating from the returned events as degicté-igure

3.2. Thus, it is easy to access the whole set of events aagiisgjta collective-operation
instance.

A

' Enter
Q Exit
@ Send
@ Receive

locations

Message

enterptr

time
Figure 3.3: References provided by pointer attributes.

Note that the pointer attributes from Definition 3.10 andl3:&n be used to abbreviate the
definitions ofr! andsn®<. Although state sequence and pointer attribute definitremsd
reference each other, they would remain well defined foreélaseans mentioned earlier.

3.43 MPI2

In addition to simple point-to-point communication andleotive communication among
the members of a group of processes as provided by the fissowesfmpI, thempI Forum
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decided to make more advanced features, such as parallel,fiRemote Memory Access
(RMA), and dynamic process management, pamifand publish it as the latest version
MPI 2 [53].

Parallel filelo was devised to increase the performance of Ifileoperations. Theo
features ovPI 2 not available in traditionalNix 10 include noncontiguous access in both
memory and file, collectivedo operations, use of explicit offsets to avoid separate seeks
shared file pointers, non-blocking, portable and customized data representations, and
hints for the implementation and file system.

Whereas traditional point-to-point communication conaisicommunication and synchro-
nization by requiring each side to explicitly invoke an cg@n and to supply message
parametersRMA is based on a separation of the two concerns by allowing aepsoto
access another process’s memory without that procesdisieparticipation. However, to
maintain consistency of memory accesses @agh epoch is embraced by specific syn-
chronization operations depending on A access category.

Similar topvM [29], MPI 2 allows the dynamic startup of processes. This featuresdwo
goals: the dynamic adjustment of the number of processesito on the problem at hand
and the connection of tweiPI applications started separately. Central to this feattee a
intercommunicators, which distinguish between a local@aneimote group of processes.

3.5 Model Enhancement: OpenMP

The Opemp interface for shared-memory programming offers a set @atives that can
be inserted into the source code to instruct the compileatalfelize code sections, such
as loops. In addition, the application may call Ogenlibrary functions to control the
parallel environment or to perform lock synchronization.

3.5.1 Basic Event Model

The execution of an Opefp application follows the fork-join model. The program sgart

with a master thread, which creates a team of slave threaels artitering a parallel region.

The team is terminated after leaving the parallel regionanygthe master thread resumes
its execution. Thus, the locations of Opgnevents are threads.

However, when using nested parallelism by allowing slaveatis to create subteams, the
unique identification of a thread is no longer possible bseahe Opemp library treats
every team as a separate name space for thread identifieaisisTwhen a new subteam
has been created the application can only ask for the idemtifia thread relative to the
name space of that subteam. For this reason and due to tleenlangber of applications
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that do not make use of this feature, nested parallelisrmigregl here and it is assumed
that there is no nested execution of parallel regions.

If nested parallelism is ignored, threads can be uniquagtified by their thread number.
Thus, each location is an elementof:= 7" = {0,...,n; — 1} , wheren, is the total
number of threads. The thread number can be obtained usi@gamp library call. The
master thread always has the thread nuntbéfor simplicity, it is assumed that the team
size used in parallel regions remains constant during thieeggrogram execution and is
not dynamically adjusted.

A thread with thread numbethat is created before and terminated after a parallel nagio
considered to be the same location as a thread with the saeaglthumbet that is created
before and terminated after another parallel region. Theathis assumed to be suspended
instead of really being terminated. Thus, the total numib&yaations only depends on the
maximum number of threads running simultaneously.

The static view of Opemp applications is similar to that afipi applications in that an
Opemvp application’s source code is also made up of regions. Hokvapart from regions,

such as functions, loops, and basic blocks, which can bedfoumpi applications as well,

there are regions that are defined by enclosing them witletdiess. The resulting regions
are called Opemp constructs

Thus, the basic event model for OpemincludesEnterand Exit events as the basiepPi
model does. However, an Opep application may use multiple Opgir constructs of the
same type at different places in the source code. For thgreat is assumed that the
region attribute of Opewip constructsboth makes different regions of the same type dis-
tinguishable and also encodes the construct type. Thipigesed by a functioregtype()
which can be applied to the region attributecaferevents and which provides the required
distinction among different types of OpeRn constructs.

In contrast to traditionaliP1, where all processes start from the very beginfifpemp
starts with only one master thread, which forks into paratecution only after reaching
the first parallel region. Also, after finishing a parallefjien the slave threads are ter-
minated and the master thread is the only one that contimtezsigon. To identify the
points in time when the execution switches from serial tafd@rmode and vice versa,
the Opemp event model defines two event typesk andJointhat are placed immediately
before the start of parallel execution and after the end odljeh execution, respectively.
They both inherit from a common base typeam

In Opemvp applications, the threads of a team execute parallel agtstcollectively, that
IS, those constructs that are intended to be simultaneenslyuted by multiple threads are
executed by all threads and in the same order. Thus, the xeaf Opemp parallel
constructs follows the same rules concerning the order artitpation asvpi collective

°Note that the latest versiompi 2 allows process creation during run time as an advancegréeat
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operations do. The difference kP is that the group of locations is not represented by
a communicator but by a team of threads. For pure ®pespplications without nested
parallelism this is the set of all threads. Figure 3.4 shdwstxecution of a parallel-region
construct. The master thread generat@s andJoin events immediately before and after
this parallel-region construct.

A

@ ' Enter
2 @ oMPCExit
(&)
© [Siave @ & %Fork
Join
slave .< ________ _@
slave "_ _______ _@
A e
master A= ‘< _@ @
_ _enterptr

time
Figure 3.4: Collective execution of an Opemparallel region.

To let an event trace reflect the collective execution oflpgEreonstructs, their execution is
finished by generating amMPCExitevent instead of a regulakit event. Parallel constructs
are those Opeanp constructs that are executed by multiple threads to exptotontrol
parallelism. They are listed below:

e parallel

e (parallel) doffor

o (parallel) sections
o (parallel) workshare
e single

e barrier (implicit and explicit)

Note that an implicit (i.e., compiler-generated) barriss@ciated with a parallel construct
is considered to be a separate construct and is treatedieeveay as an explicit (i.e., user-
specified) barrier, except that its source-code locatiomotbe determined explicitly. So
when executing a parallel construct with implicit barrigre control flow is assumed to
perform a nested execution of a parallel construct withaunhaplicit barrier but with an
enclosed execution of an “explicit” barrier at its end. AgaMPCEXxitis a specialization
of Exit. However, this time the specialization does not carry arditemhal attributes, it
denotes only a more specialized context.
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The Opemp event model also includes lock synchronization. There estgpeAlock for
the event of acquiring a lock and one typieck for the event of releasing a lock. Of course,
anAlock event always occurs before its correspondirgk event. Similar tavP1 point-to-
point event types, these event types actually describe @atwnic activity, so both events
represent only one small point in time of the actual duratibimerefore, amlock denotes
the first moment after the lock has been acquired, andi@i denotes the first moment
after the lock has been released. That s, the thread is seps®n of the lock only between
the Alock and the correspondirjock event.

To identify the lock they refer to, both types carry an atitédock that contains an identifier
of the lock object they operate on. This attribute is inteerifrom a common base type
Syncindicating an event related to lock synchronizatiagyncevents are usually placed
in between the&nterandExit events of the corresponding Opém library functions. The
complete basic event model for Opemis depicted in Figure 3.5.

Event

location
time

RegionEvent

region

Enter

call site

Figure 3.5: Basic event model for Opem applications. Spotted boxes represent Qgen
specific event types.

3.5.2 Enhancement

Some of the abstractions defined fopi apply to Opemp as well. These include the
region stack and thenterptr attribute that refer to the control flow as it appears in appli
cations of both programming models. And as already antieghdhe treatment of parallel-
construct instances is similar to thatsbi collective-operation instances. However, a fea-
ture different frommp1 is lock synchronization. Here, a way to track the ownerskspoiny

of a lock object is presented.
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Also, the region-stack concept is extended to take intowadcthe fact that a slave thread
is a copy of an already running program in contrast to a pragtarting from the very be-
ginning. Again, the definition of auxiliary functions andtants simplifies the definitions
presented in this section.

Definition 3.12. Let! € L be a location:

master = 0
t if [#£0
isslave(l) = { rue | 7

false else

o

The constantraster just identifies the unique master thread, which has the dhmaanber
zero, whereassslave() is a predicate that indicates whether a location is not thetena
thread, that is, whether its thread number is not equal . zer

State Sequences

The capture of parallel-construct instances follows tmeesprinciple as the capture @i
collective-operation instances does. As already mentigoerallel constructs are executed
by all threads and in the same order. Since there is only omgpguf locations (i.e., the
team of threads- L), only one state sequence for the whole team is defined.

Definition 3.13 (Parallel-Construct Queue). The parallel-construct queu&s is a state
sequence that collects tloa1PCExitevents of active Openp parallel-construct instances.
Its transition operatay is defined by the following transition functions:

pompcEzie ¢ Pi = Pi-1U{e}

PBioq \ Inst if VI e L:|haveloc(P;_1,0)| > 1
PEvent P =

PBi1 else

where Inst := | leastrent(haveloc($;_1,1))
IeL

o

An OMPCExit event is added teg;_; by applying the functionoy pcr.i:. AS SOON as
all OMPCEXxit events belonging to a parallel-construct instance are eésofg; ,, they
are removed by applyinge,..;- A function ompcoll() to access the events belonging to
the same parallel-construct instance can be defined in a malpgous tompicoll() in
Definition 3.9.
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When an OpemP application forks into parallel execution, it creates oneore copies of
the master thread. The slaves do not start their executitre aain function, instead they
start at the entry of a parallel region. Since the regionksteam Definition 3.6 collects
events from only one location, the first candidate to be ctdle for a slave would be the
Enterevent of the parallel region. However, somebody might berested in the call path
leading to that parallel region and so it seems reasonabléd toslave inherit the region
stack of its master. Therefore, the region stack is exteimdguach a way that slaves always
get the region stack of their master upon their creation.

Definition 3.14 (Inherited Stack). Theinherited stacky’ of a location/ ¢ L is a state
sequence that collects theterevents of active region instances at locatioti [ is a slave
thread,3' inherits the stack of its master upon creation. The tramsitiperatos’ of 3 is
defined by the following transition functions:

i R 3 Uude} if elloc=1
Enter i j@ ) else

. \ mostrent(3_)) if  eloc=1

.l l
i D J =
FExit else

Z

1
Fork else

. isslave(l)
YJoin : :‘i = l
Ji 4 else

I L4 {3’”““” if dsslave(l)

<&

The first two functions,,,., andi;,,, work exactly as the functions of the previously de-
fined region stack do. They just colleaiterevents and remove them upon the occurrence
of their correspondingxit events. The difference comes with the third and fourth fimmct

In the case of the master threafd, , andi/,,, behave neutrally. In the case of a slave
thread, howevetl. ., takes the (inherited) region stack of the master and as#igms!.
After that, the inherited stack contains not only #mgerevents from its own locatiohbut
also theenterevents of the master at the moment when the slave was crédtedparallel
execution is finished, . reflects the slave’s termination in that it assigns the eraptyo

3t

Join

The programmer of an Opeir application is able to control synchronization expliciby
calling Opemp lock-synchronization functions. Among other mechanisoa& Isynchro-
nization may have an important influence on the performaetawior of an application.
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To track the ownership history of a lock object, it is usefldefine an auxiliary state
sequence that remembers its last change of ownership.

Definition 3.15 (Ownership Status).Let K be the set of all locks used at run time. The
ownership statug” of a lockk € K is an auxiliary state sequence that contains the most
recent event changing the ownership statuk. dfs transition operatar® is defined by the
following transition function:

ok o OF = {e;} if eilock =k
. Z ok | else

o

This auxiliary state sequence is not intended to be usedtljirénstead it is used in the
next subsection to define a pointer attribute linking thenev#hat constitute a lock object’s
ownership history.

Pointer attributes

If a lock has finally been acquired after waiting a considkrgeriod of time, it is inter-
esting to know why the lock was unavailable. Also, if a locls heen released, it is useful
to find out when it was acquired. Both questions can be ansimreroviding a pointer
attribute that links a lock-ownership event, that isyacevent, to the precedingyncevent
referring to the same lock object.

Definition 3.16 (lockptr). Thelockptr attribute is a pointer attribute forgncevente; €
Esyne that points to the precedirgyncevent operating on the same lock object:

e if D?i-ZOCk — {e,
e;.lockptr .= ¢ et tes} e lock
null else (in this caseis 97" = 0)

o

It is clear that théockptr of anRlock event always points to aklock event and théockptr

of an Alock event always points to aRlock event. Only the firsilock event of a lock
object points towull because it represents the start of the ownership histoguré&i3.6
shows how to navigate along a lock object’s ownership hystising thelockptr attribute.

A lock object is acquired the first time by thread A usimgpsetlock. Because there is
no ownership history prior to that event, thekptr points tonull. Thread B acquires
that lock in the same way after it was released by thread Ah8tkptr of that second
acquisition points to the first release and thé:ptr of the first release points to the first
acquisition.
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2‘ ‘ Enter
'% O Exit
k< @ Alock
B
@ omp_set_lock @® O- © Riock
T 1
; ¥ ¥
— @omp_set_lock (@ () — @omp_unset lock ©) () ——
........ lockpr ...

time

Figure 3.6: Navigating along the ownership history of a latkect using thdockptr
attribute. To keep the figure simple it does not show any gibarter attributes.

3.6 Model Enhancement: Hybrid Model

Coupledsmp systems represent a distributed-memory architecture evhodes consist of
shared-memory components. The central idea behind thedhgtogramming model is
to exploit this hybrid hardware architecture by combinimg with Opermp in the same
application. In such a scenariopi is intended to perform the communication among
distributed memories that constitute the nodes of the sysiied OpeniP is intended to
share data within the shared memories of sirgye nodes. Of course, depending on the
hardware and the algorithm there may be more thanvomeprocess per node, but in most
cases itis only a single process.

Such a hybrid application runs multipler processes, which may themselves consist of
multiple threads, so the run-time structure of a hybrid egapilon resembles the hierar-
chical hardware structure. Figure 3.7 illustrates the maysnd logical hierarchies in a
coupledsmp system. OnesMP node with a physical shared memory and multipkaus
may accommodate multiple processes, which provide a steatdrbss space to one or
more threads.

In the previous two sections the location of an event wasydvaedogical one. In the case
of MPI it was the process, in the case of Opierit was the thread. Now, the event location
is a tuple consisting of a process and a thread.

Moreover, it may be useful to augment this tuple by addingyesjalal part containing infor-
mation on thecpu, SMP node, or even machine if there are multiple machines inebire
the same computation. For example, ke communication characteristics between two
processes may depend on their physical location, that isihveh they reside on different
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Figure 3.7: The physical and logical structure of couseups.

sMP nodes of the same machine or even on different machines.

However, whereas the machine and gher node are easily identifiable in most cases, it
is very difficult to determine thepPu on which an event happens because most operating
systems do not provide functions to ask for it and, in addjt@ process or thread may
switch rapidly among differentPus on the samemMpP node so that the result of a query
may not reflect thecpu at the moment when the query is issued. For this reason, the
location of an event is now described as a tuple (maclsime,node, process, thread). The
location coordinates are written in the order of increagirgnularity because a machine
may have multiplesmp nodes, which may accommodate multiple processes eachmgunni
multiple threads.

Definition 3.17 (Location (hybrid)). Thelocation! € L of an event occurring during
execution of a hybrid application is a tugle, s, p, t). m denotes a machine (i.e., a coupled
SMP system),s denotes arsMP node of that machineg; denotes a process, andlenotes

a thread of that process. The different coordinates of aitmta € L are referenced as
l.coordinate (e.9.,l.p).

It is assumed that each process has a fixad nodes = s(p) and machinen = m(p),
that is, a process may not migrate betwsem nodes or even machines.

Processes are uniquely identified by their ramkke P = {0,...,n, — 1} in
MPI_COMM_WORLD, which is a global identifier across all physical locations. is the
total number of processes.

Threads are identified by their Open thread numbet € T'(p) = {0,...,n(p) — 1}.

The thread number is an identifier local to the progess (p) is the maximum number of
threads spawned by processThe master thread of a process always has thread number
zero.

A thread with thread numberthat is created before and terminated after a parallel negio
is assumed to be the same location as a thread with the sagss thumbetr that is
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created before and terminated after another parallel megithus, the total number of
locations owned by a process only depends on the maximum ewofibhreads executed
simultaneously as part of that process.

Thus, the set of locations is:

L:={(m(p),s(p),p,t)] pe P, teT(p)}

<

It follows that the total number of locations owned by a whabgplication is just the sum
of the maximum thread numbers across all processes:

LI = 1T(®) = mlp)

peEP peP

Definition 3.17 says nothing about machine andb-node identifiers because they are not
used to define any abstractions. Also, they are not starmdrdnd may vary from platform
to platform.

The combination ofuPl and OpemP is possible in three different modes, which are de-
scribed in order of increasing generality. The first modevedimPI calls to be made only
by the master thread. The second mode allewscalls to be made by an arbitrary thread,
but in a serialized fashion, that is, only one thread at a.tifrtee third mode imposes no
restriction at all on the order and locationnpi calls.

The event model requires information on the source andrdggin location to be attached
to thesendandReceiveevents of a point-to-point message. From an instrumergerspec-
tive, this is easy in the case of the first mode because trosnation is already supplied
as an argument to point-to-point functions since the soaraestination process always
corresponds to one unique master thread. The second mede\alirequires complicated
postprocessing of the event trace to match correspondimgd-fmepoint events in order
to calculate the correct source and destination locatidlss, the group associated with a
communicator would no longer be a set of locations. Instéadyuld be a set of processes,
that is, a set of sets of locations (i.e., threads). Fin#fg,third mode, which allows the
concurrent execution aiPi calls by multiple threads of the same team, makes it difficult
identify matchingsendandReceiveevents because multiple threads may attempt to receive a
message directed to a certain process. For this reason ard the predominant practical
importance of the first mode, the following discussion igrieted to the first mode, which
allows only the master thread to invoke®| operations.

The types in the hybrid event model are the union of the typms the separate models.
The complete type hierarchy is depicted in Figure 3.8. Hadchoxes represemiri-
specific event types and spotted boxes represent dpspecific event types. Attribute
names that have not been defined so far will be introduceditatkis section.
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The remainder of this section describes how the models fglesiprogramming models
need to be adapted to be suitable for the hybrid programmiodein Moreover, an addi-
tional abstraction is introduced that allows the contexmevent to be captured in a more
convenient way than that provided by the abstractions deeel so far.

3.6.1 MPI

The abstractions of the former model also remain valid imveé hybrid programming.
The region stack, which is actually not related to a specrog@mming model, requires
no changes. Also, the message queue and the collectivatmpequeue can remain un-
modified, and the pointer attributesterptr and sendptr do not need any changes ei-
ther. Of course, the message queue needs to be consideyefbiophirs of source and
destination locations that represent master threads,wrawe thread number zero (i.e.,
(m, s,p,0)). As a consequence, a communicator’s group is always a seastemthread
locations.

3.6.2 OpenMP

The abstractions defined for Openrequire only minor modifications to take into account
the fact that hybrid applications may have multiple masteedds as a consequence of
having multiple processes. So the previously defined canhstaster is turned into a
function that maps an arbitrary thread onto its master thjaat by setting the thread
number to zero and keeping the process number. In additienset? cam(p) denotes
those locations that have the process number

Definition 3.18. Let/ € L be a location with = (m, s, p,t) andp € P a process number:

master(l) = (m,s,p,0)
Team(p) = {leL| lp=rp}

<&

Consequently, the state sequengdor the capture of parallel-construct instances now
needs to be defined separately for each prgebssause parallel constructs are collectively
executed only by threads belonging to the same procegscollects OMPCExit events
occurring as part of procegsand removes them upon completion of the parallel-contstruc
instance.
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Definition 3.19 (Parallel-Construct Queue (hybrid)). The parallel-construct queues?
of a procesy is a state sequence that collects thePCExit events of active Opeup
parallel-construct instances of the processlts transition operatos” is defined by the
following transition functions:

Pormpcesy B = P U{e} i eilocp=p
o o g\ Inst if VI e Team(p) : |haveloc(!_,1)] > 1
FEvent i ‘13?,1 else
where Inst:= |J leastrent(haveloc($E_1,1))
leTeam(p)

o

Also, the transition functiot., , of the inherited stacl;, which is responsible for handing
over the stack of the master thread, now refers to the mawstead of the location it is
associated with.

Definition 3.20 (Inherited Stack (hybrid)). Theinherited stack’ of a location/ € L is
a state sequence that collects Haeerevents of active region instances at locatioff [ is
a slave thready inherits the stack of its master upon creation. The trasrsibperator’ of
7' is defined by the following transition functions:

l . B
O JiUled it eiloc=1
o Z jlz‘—l else
Exit . i = l
jl 1 else
master .
iiﬁ k- o= isslave(l)
" Z jﬁ 1 else
i{] ; P if isslave(l)
oin i i 1 else

o

Note that care should be taken when creating lock-objedcttifilers to be used as values
for the lock attribute. The current definition af* expects that each lock object has an
identifier that is also unique across different processetesinstrumentation system must
ensure this uniqueness also across process borders orfthiéiaies of O, and lockptr
must be modified in a way that distinguishes among differemtgsses.
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3.6.3 Dynamic Call Path

Optimizing a parallel application requires knowledge ofiethparts of the program are
responsible for inefficient behavior. However, identifyithe weak parts means not only
identifying code regions where inefficient behavior takieeg, but also understanding the
context in which it happens; that is, the purpose for whigséregion have been visited.

The (inherited) region stack provides exactly this contexhat it gives the user the full
path of regions that have been visited on the way to the curegion. Although this region
path may contain regions that cannot be entered by calling@ibn, this thesis refers to it
as thecall pathbecause most readers are presumably more familiar witldésignation.

However, the stack contains more information than necgdssrause in many cases the
user is not interested in the time at which the individualdeessor regions have been
entered. In addition, finding out whether two events havestrae call path requires a
tedious comparison of their respective region stacks.

The set of all call paths in a program forms a structure thabramonly called theall
graph The call graph created from considering potential calhpahrough static analysis

is called thestatic call graph whereas the call graph created from call paths that have
really been executed during run time is called thaamic call graph Because event
traces reflect only call paths visited during program exeaubnly the dynamic call graph

is considered in the following.

The nodes of the call graph represent call paths visitecdhdyprogram execution and the
directed edges represent transitions between call path&dlve occurred during program
execution while entering a new region, that is, while getiegaan Enter event. Before
considering the dynamic call graph in more detail, the cathpf anEnterevent is defined
and the notion of call-path equivalence between Bmerevents is introduced.

Definition 3.21 (Call Path). The call pathcpath(e) visited by anEnterevente € Epge,
Is a sequence of pairs (region, call site), which can be ddrikom the inherited stack of
the event's location by extracting the correspondinglaites from the events of°(e)

in the order of their occurrence in the event trace:

where 3¢°¢(e) = {e;,... e } A
V 1<jk<n: j<k = e <e,) A
(V 1<j<n: e, reg=1r; N e .csite = cj)

The symbob concatenates element pairs to form a sequence.
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Definition 3.22 (Call-Path Equivalence). Two Entereventse, f € Eg,., are call-path
equivalent =, f if and only if they have the same call path:

e=y, [ & cpath(e) = cpath(f)

<

The call-path equivalence identifieaterevents having the same call path. Since it is an
equivalence relation, it partitions @hterevents into classes of call-path equivalent events.
This suggests encoding the nodéof the call graph, which are nothing but call paths, as
representatives of such equivalence classes. One way tedefiepresentative for each
class is to take the firgtnter event visiting the corresponding call path, that is, thestea
recent one in the class.

Definition 3.23 (Call-Path Representative). The representative of the call-path—
equivalence class amterevente belongs to is the least recent one in the class:

e = leastrent({f € Epnter| € =cp f})

o

Thus, the set of noded in the call graph can be written as the seteafer events that
represent themselves:

N = {n € EEnter‘ n= n} (35)

There is an edge from a nodec N to a noder € N if and only if cpath(l) o
(r.reg,r.csite) = cpath(r), that is, if there exists aBnterevent that moves fromto r.
Consequently, there is an edge fromo » if and only if:

de € Fgpter : centerptr =1 N e=r (3.6)

The condition above requires that there isaterevent executing a transition from the call
path (i.e., node) represented bto that represented by, Obviously, if there is such an
evente the condition is satisfied bys representative = r as well and, vice versa, because
e moves between the same call pathg @®es. So it is possible to rewrite Condition 3.6
as:

r.enterptr = | (3.7)

It follows that the set of edges can be derived solely frormelets of/V, that is,/NV encodes

the whole call graph. Whereas the nodes are encoded asepfatdges, the edges are
implicitly provided by the above relationship (3.7). To bH@leato associate a compound
event with the call path where it happens, it seems reasenalfiave a pointer attribute
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cnodeptr of anEnterevente; € Fpg,., that points to the corresponding call-graph node
(i.e., its representative):

e;.cnodeptr == ¢€; (3.8)

However, it is not obvious whether this (3.8) is a definitimmpliant with the definition
template for pointer attributes (3.4). To give a compliasfimition of cnodeptr, it is as-
sumed to be defined for now and, on this basis, two auxiliasgrabtions are defined that
can be used to provide a valid definition torodeptr.

Definition 3.24 (cedgeptr). The cedgeptr attribute is a pointer attribute for anterevent
e; € Erner that points to the call-graph node (i.e., its represergativat has been left by
€.

e;.enterptr.cnodeptr = e;.enterptr it e;.enterptr # null

e;.cedgeptr :=
null else

o

Note thatcedgeptr encapsulates the relationship that must exist between teleato
have an edge connecting them. Although Definition 3.24 sdfen pointer attribute of;,

it is compliant with the definition template for pointer dttrtes (3.4). This is because the
expressions;.enterptr can be replaced by a function sf*' (see Definition 3.10). Due
to the inductive way of defining;.cedgeptr, 1S\ and all{e.cnodeptr| e € R} can
be assumed to be already defined. Also, the definitian.afdgeptr satisfies the working-
set requirement (Section 3.3.3) because to calculatedgeptr it is only necessary to

dloc

access; ands; ™.

The second abstraction is an auxiliary state sequentteat collects all call-path repre-
sentatives and encodes the part of the dynamic call grapi#ésabeen visited so far. As
already mentioned, the edges can be derived from the naal#$s sufficient to collect the

nodes. However, the edge condition will contribute to thieniteon of ®.

Definition 3.25 (Dynamic Call Graph). Thedynamic call graplo is a state sequence that
collects all call-path representatives. Its transitioeraporo is defined by the following
transition function:

(

0,1 U {ei} if 3 l,T €1

( r.cedgeptr =1 A
e;.cedgeptr =1 A

Opnter @ D = er
e;.reqg = r.reg A

e;.csite = r.csite )

Di_1 else



58 CHAPTER 3. SPECIFICATION OF PERFORMANCE BEHAVIOR

An Enterevent is added t®;_; if there is no edge in the call graph as representes by
that describes a transition between the call path le#; land the one visited by;. If there

is no such edge contained4n_; then a a new node with a new implicit edge is added in
the form ofe;. If there is already such an edggremains as it is when moving from,_,

10 ;.

The first part of the conjunction ivyg,,., requiresl andr to be an edgél, ) in the call
graph. The second part ensures that the call path leftisyequal to the call path visited by
[, whereas the last two parts ensure that the call path visitedis equal to that visited by
r. The full condition guarantees that the event added;tq is a call-path representative
because it requires that the corresponding call path hasr fimen seen before, which
follows from the nonexistence of an edge leading to thatpzth.

9, is well defined because due to the inductive nature of defining,_, ande;.cedgeptr
can be assumed to be already defined. It is obvious that thatatefiof ©; satisfies the
working-set requirement. Note that, in contrast to theest&tquences defined so far,
never shrinks in size because the dynamic call graph neeenties smaller while program
execution is proceeding. Now, it is easy to give a new dediniof thecnodeptr attribute
(3.8) according to the template (3.4).

Definition 3.26 (cnodeptr). Thecnodeptr attribute is a pointer attribute for @amterevent
e; € Erner that points to the call-graph node (i.e., its represergativat has been visited
by e;:

( if 3 Lre®_:

( r.cedgeptr =1 A
e;.cedgeptr = [ A

e;.cnodeptr =
e;.reqg = r.reg A

e;.csite = r.csite )

L e, else

<

The condition in Definition 3.26 is the negation of that usedkfinition 3.25. It asks
whether the call path visited by has been seen before. If so, the attribute points to the
corresponding representatives ®,_;. If not, it is a representative itself, in which case it
must point to itself. Note that there is at most oane ©;_; with those properties because
each equivalence class has only one representative.

Similar to Definition 3.24, Definition 3.26 refers to a poin&ttribute ofe;. However, by
replacinge;.cedgeptr by the right-hand side of its definition and by expanding ¢htte
expressiom;.enterptr, which then appears as a functiorxif ', it becomes obvious that
Definition 3.26 is compliant with the definition template fainter attributes (3.4) and that

it satisfies the working-set requirement.
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Note that this view of the call graph does not include a spdogtment of recursive
programs. Each step in a recursion may create an additiodal in the call graph instead
of forming a cycle. For this reason, the call graph will fornree if it has only one root
path. This condition is usually satisfied in standard sipylgram multiple-dataspmp)
scenarios, where each instance of the program starts arihe main routine.

As will be demonstrated in Section 3.8.3, theodeptr attribute provides a convenient
means to associate a performance-relevant compound eutérthe corresponding node
in the call graph and, thus, to quickly determine and complageexecution context of
different compound events.

3.6.4 Summary

This subsection summarizes the enhanced model for hybplicapons including event
types and constraints and gives an overview of all abstnastintroduced so far. The
model for hybrid applications comprises the union of allrewgpes contained in the indi-
vidual models fompi and Opemp. This union includes types referring to the control flow
that denote the entry and the exit of a program region. IntexagiMPI-specific event types
include sending and receiving point-to-point messagesedisas leaving collective opera-
tions; OpemP-specific event types cover team creation and terminath@exit of parallel
constructs, and lock acquisition and release. Figure ®&slhe complete event-type hi-
erarchy. It also shows the pointer attributes in bold-fatiets added to the basic attributes.
Since the hybrid event model includes the execution of pireand pure Opemp appli-
cations as special cases, from now on everything will beesgad in terms of this hybrid
event model. Those abstractions that have been introdgcaaxdiary ones are necessary
to define other abstractions but are not intended to be useahipound-event specifica-
tions.

Constraints. The entries and exits of region instances occurring on theedacation
must form a correct parenthesis expression, that is, amegionly allowed to be left after
all enclosed regions have been left. In addition, $hedevent of anMPI message must
occur before its correspondimgcvevent, andvpi collective operations must be executed
in the same order by all members of the group associated etbdmmunicator. Similar
to mpI, OpemviP parallel constructs must be executed in the same order lgrakhds of
the team. Finally, amiock event must always occur before its correspondifagk event
and twoAlock events operating on the same lock are not allowed to followh ezther
immediately without an intermediatock event that releases that lock before it can be
acquired again.
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Event

location
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sent
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Figure 3.8: The type hierarchy for hybrid applications utthg the pointer attributes in
bold-face letters. Hatched boxes represemi-specific event types and spotted boxes rep-
resent Opemp-specific event types.

State sequences. The enhanced model provides state sequences to captuits évan
are still relevant to the context of a given event in conttastvents that are not relevant
because they refer to already completed activities.

! (Definition 3.6): One region stack per locatibthat remembers akinterevents
of active region instances at locatitn

3¢ (Definition 3.20): One inherited region stack per locatiatihat remembers all
Enterevents of active region instances at locati@md, in addition, for slave threads
copies the (inherited) region stack of their master thrgazhuheir creation.

om*? (Definition 3.7): One message queue per location pair souace destination

d that remembers aflendevents of messages currently being transferred froond.
According to the restriction thatpi statements are only allowed to be executed by
the master thread, there are message queues only for sodrdestination locations
that represent master threads (i(e, s, p, 0)).

¢¢ (Definition 3.8): One state sequence per communicatbat collects all events
belonging to the same instance of ®mrI collective operation. Ife is an event
that completes such a collective operation, then the fanetipicoli(e) delivers all
events belonging to that instance, otherwise it delivezsetinpty set.

P (Definition 3.19): One state sequence per team represegtadoboces® that
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collects all events belonging to the same instance of an @pearallel construct. If
e is an event that completes such a collective operation,ttiefunctionompcoll(e)
delivers all events belonging to that instance, otherwidelivers the empty set.

o OF (Definition 3.15): One auxiliary state sequence per loclkeoldj that starts as an
empty set and after the first acquisition of that lock objdatags contains the last
event changing the lock’s ownership status.

e © (Definition 3.25): One auxiliary state sequence that ctdled! call-path repre-
sentatives and encodes the part of the dynamic call grapthésabeen visited so
far.

Thus, the flat overall stafe; of an eveng; in the hybrid model is the union:

D= JrulJau ool Jeulptu | ofuo,

leL leL s,deL ceC peP keK

To allow the efficient computation of abstractions related;t it is sufficient to provide
fast access to the elementsdf = T',_; U {¢,;} because others need not be accessed.

Pointer attributes. The enhanced model provides pointer attributes that linkted
events together to give better access to instances of higherconcepts, such as region
instances, messages, a lock’s ownership history, and theath.

e enterptr (Definition 3.10): Each event provides amterptr attribute pointing to the
Enterevent of the currently active region instance at the locatibthat event. The
enterptr attributes of events occurring at top level pointsitdl.

e sendptr (Definition 3.11): EaclReceiveevent provides aendptr attribute pointing
to the correspondingendevent.

e lockptr (Definition 3.16): Eaclsyncevent provides dockptr attribute pointing to
the lastsyncevent changing the ownership status of the same lock. I1§gheevent
is the first event operating on that lock, thekptr attribute points towull.

e cedgeptr (Definition 3.24): Eaclenterevent provides an auxiliamedgeptr attribute
pointing to the call-graph node (i.e., its representatimerevent) that has been left
by that event. If the call-graph node visited by that eveminentry point to the call
graph, the attribute points taull.

e cnodeptr (Definition 3.26): Eaclenterevent provides anodeptr attribute pointing
to the call-graph node (i.e., thenter event representing that node) that has been
visited by that event.
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3.7 Specifying Compound Events

In the preceding sections an event model has been definedlliinas simple behavioral
elements of a parallel application to be described. This@eexplains how to combine
these elements to higher-level compound events.

A specification method for compound events representinippeance properties of a par-
allel or distributed application should meet the follownegjuirements:

1. It should be simple even in the case of complex compounctgve

2. It should allow for an efficient implementation.

The first requirement demands the specification of the oglahips among the constituent
events of a compound event on a very high level of abstraciitve second requirement
concerns the efficiency of possible search methods. Thipisazally important in view of
the huge amount of data typically involved in event tracihgeems that both requirements
can be fulfilled on the basis of enhanced event models. Rirgéneral scheme for speci-
fying compound events is introduced and then it is explaimad enhanced event models
in conjunction with the scheme proposed here are able to tnedivo requirements.

Definition 3.27 (Compound Event). A compound evert’ C F is a subset of events of
an event tracé’. The elements of this subset are called¢bastituentof the compound
event. The set of constituents can be divided into a set oh@ogssarily disjoint subsets,
which are called th&actionsof the compound event:

c=Jc, 1={1...,n}

iel

The fractions are connected by relationships that can beesged using functional depen-
dencies:

Ci=fi(C), C'=J¢, JcI

jeJ

The resulting dependency graph must be acyclic. FurtheryreachC; except for one
fraction has at least one predecesSgy; it depends on. In addition, there is one fraction
that has no predecessor and that contains only a single. eVai# fraction is called the
root fractionand the single event inside is called toet event

The root event is characterized byaot predicatethat can be used to decide whether an
arbitrary event from the trace is a possible root event.
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A compound event' consists of a set of primitive events (i.e., its constitggn# con-
stituent event is an instance of an event type defined in aaneald event model. The
fractions reflect the logical structure of the compound évdime relationships that con-
nect the different fractions can be expressed using funatidependencieg which map a
set of events onto another set of events from the trace. Tatifuns may use the abstrac-
tions provided by an enhanced event model (i.e., state segqa@and pointer attributes).

However, to be useful for the purpose of specifying compoewvehts this scheme must
meet several conditions. As already mentioned, it mustrensat the corresponding de-
pendency graph is acyclic. Furthermore, eéthexcept for ongoot fraction must have

at least one predecess0yf.; that it depends on. So eve€y; can be calculated from the
root fraction by evaluating the functional dependencie$.c@airse, it is possible that an
evaluation step fails, so eaghcan also be considered as a predicate imposing constraints
on the structure of the compound event. As a final conditierrdot fraction is required to
have exactly one element because in this way it can be edsihacterized using a simple
predicate. The root predicate can be applied to an arbigsaegt in order to decide whether

it is a possible root event.

Note that in many cases the fractiafisC C' will consist of only a single event. Neverthe-
less, permitting multiple events to be members of such aetubsecessary, for example,
to make complete states of a state sequenserocollective-operation instances part of a
compound event.

Algorithm 3.1. To locate all occurrences of a compound evéhin an event tracel
perform the following for all eventsc E:

1. Apply the root predicate te.

2. If successful, instantiate all constituents that arectesgble from the root event by
evaluating the functional dependencies.

3. Instantiate all constituents that are reachable fromd¢bastituents already instanti-
ated.

4. Repeat step 3 until all constituents are instantiated mirestantiation step fails. If
all constituents have been instantiated, one instance lods been found.

<

Note that to avoid two different root events leading to th&tantiation of the same com-
pound event it is necessary to either check for double itistéon or to ensure that each
compound-event specification provides one unique rootteven

Recall the two requirements from the beginning of this sectAn enhanced event model
provides abstractions that correspond to the vocabulatigeoprogramming model used.
By using these abstractions when defining the functionshweebin the definition of a
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whole compound event, it should be possible to produce alsiamua understandable spec-
ification for most of the compound events representing glperformance properties. A
demonstration of this will be given in Section 3.8.

The efficiency of an implementation of Algorithm 3.1, whichaddressed by the second
requirement, relies heavily on the mechanism used for aswp®vents. Consider the
following typical scenario. In order to apply the algorithior locating instances of a
compound event, a search tool walks sequentially throughettent trace. If an event
fulfills the root predicate, the tool will start to evaluaketiree of functional dependencies
used for defining the compound event. It will try to accessp#vents from the event
trace. As already mentioned, most of these events belorgetodntext (i.e., events from
the overall state) of the root event or of events belongirtgeéaecent past of the root event.
All the tool is required to do is to track the overall state lué events it accesses during its
sequential walk and to provide efficient buffered accesbeonorking sets of a relatively
small contiguous window of the event trace.

Of course, the scheme itself does not impose any restrgonthe complexity of the
functions f;, so these have to be defined carefully. Nevertheless, thgrdetthe Ex-
PERT performance tool presented in Chapter 4 suggests that wotitext of performance
analysis the complexity of the required functions is maaddge

3.8 Example Compound Events

This section shows that complex performance propertiesaddliel applications can be

easily represented by applying the previously presentiedmnse. The properties are speci-
fied as compound events, thereby making use of the previde$iyed abstractions. Note

that all examples require a performance-data granulaoitytifeir representation that is

provided only by event traces. Although the performanceeries are sorted accord-
ing to the programming model to which they refer, the coroesiing compound events

are always based on the hybrid event model because the hgbddl contains the single

programming models as special cases.

In the following compound-event examples, a symbol begigniith a lower-case letter
denotes a single event, whereas a symbol beginning with p@rigase letter denotes a set
of events.

3.8.1 MPI

The most important performance properties relatedito appear in conjunction with
blocking communication, which can cause significant wgittimes. Note that non-
blocking communication may be affected as well, since nlmeking communication may
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be finished with a blocking operation, suchMBI_Wait. In particular, collective opera-
tions, such asPI_Allreduce frequently appear to be the source of performance problems
because their inherent all-to-all semantics have a syniting effect that is difficult to
avoid.

Example 3.1 (Late Sender).The first example describes the situation that occurs when an
MPI_Recvoperation is posted before the corresponditR)_Sendhas been started (Figure
3.9). The receiver remains idle during the interval betwientwo calls instead of doing
useful computation.

A

al ‘ Enter

2 e S1 O Exit

§ @ Send
= \‘MPI—Send O @ Receive

O+, root

"\ Message
— Q- MPI_Recv () — ’

enterptr

T T -
< > time
wasted

Figure 3.9:Late Sendecompound event.

This compound evedt{root}, {s1},{e1}, {e2}} consists of four fractions, each containing
only a single event. The root evenb(t) is just the event indicating the message arrival
(i.e., an event of typeeceivg. Thus, we have the following root predicate:

type(root) = Receive

The other three events are the event of sending the messagthé event of entering the
MPI_Sendregion ¢»), and the event of entering tiP1_Recvregion ¢;). They are defined
as follows:

sy = root.sendptr
) root.enterptr if root.enterptr.reqg = MPI_Recv
R else
si.enterptr if ( sj.enterptr.reg = MPI_Send A
ey = eo.time > ey.time )
fail else

Applying Algorithm 3.1 to this compound-event specificatiould result in the following
sequence of actions. When a potential candidate for theenaatt has been found by
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evaluating the root predicate, that is to say, when an evViegype Receivehas been found,
the algorithm traces back tsendptr attribute of the root event to locate the corresponding
Sendevent ;). Now the event of enteringlPl_Recv(e, ) is determined by navigating along
the enterptr attribute of the root event. To ensure that this event raalfigrs to a region
instance ofMIPI_Recy, the reg attribute is checked. Evemt is instantiated in a similar
manner, but here an additional constraint, which is esadntithe whole compound event,
must be taken into consideration. TN#PI_Recv has to be called before théPI_Send

So the two time stamps must be compared. After instantiaifoall compound-event
constituents, a tool can compute the amount of wasted timsubgracting the two time
stamps:

wasted = ey.time — eq.time

The compound event described here is a frequently occusitngtion of inefficient be-
havior, which can be observed for several real-world appbnis, as shown in Chapter 5.

@)
Example 3.2 (Late Receiver).This compound event refers to the inverse case. The send
operationMPI_Sendblocks until the corresponding receive operation is call&tis can
happen for several reasons. Eitherttre implementation is working in synchronous mode
by default, or the size of the message to be sent exceedsdhaldemPi-internal buffer
space and the operation blocks until the data is transféoréte receiver. The behavior is
similar to anMPI_Ssendwaiting for message delivery. The situation is depictediguFe
3.10. The definition is very close to theate Sendecompound event. In particular, the
root predicate is identical so it is not shown again.

s1 := root.sendptr

root.enterptr if root.enterptr.reqg = MPI_Recv
er =
' fail else

s.enterptr if ( sy.enterptr.reg = MPI_.Send A
es.time < ej.time A

€2 = s1.loc
ey ER (e1) )

fail else

An important difference to the previous compound eventeésdabndition appearing in the
definition ofey. Of coursees.time has to be less than .time, since the receiver has to
be later than the sender. In addition, Mel_Sendoperation must not have finished before
the MPI_Recvhas been called. So it is necessary to look at the region sfable location
from where the message was sent and at the time just aftétRh&ecvcall was posted
(®*1-¢(ey)). If ey is an element of this setjP1_SendandMPI_Recvoverlap in time.
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‘ Enter
O Exit

@ Send
_____ @ Receive

"\ Message
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MPI_Recv () —

enterptr

locations

time
wasted

Figure 3.10:Late Receivecompound event.

It is clear that this criterion still does not prove waitinffMP1_Senddue to lack of buffer

space with maximum reliability. Nevertheless, it is a neegg condition and it is the
strongest that can be proved based on the data availablgpicaltevent trace. A detailed
discussion of the performance problem related to this ceamgevent can be found in [32].

This and the previous example are special cases of a larges of similar compound
events involving alternativeP1 point-to-point communication functions.

@)
Example 3.3 (Messages in Wrong Order).The third example is taken from tt@rind-
stone Test Suite for Parallel Performance Td@38] and highlights the problem of passing
messages in the wrong order. This problem can arise if oreepsas expecting messages
in a certain order, but another process is sending messhgeare not in the expected
order. In Figure 3.11 an extreme example is shown. In thekeft of the picture, process
1 is processing incoming messages in the reverse sendieg dPdocessing them in the
order they were sent would not only speed up the program butdralso require much
less buffer space for storing unprocessed messages. Whisum in the right part of the
picture.

This situation is modeled as a message that is sent laterebatved earlier than an-
other message with the same sender and receiver. For tlsisniedne compound event
{{root},{s1}} consists of two fractions, each containing only a singlenev@ he root
event (oot) is the message receipt, the other eventic the message dispatch. Again, the
root predicate only requires the event type tRbeeive s; is defined as follows:

root.sendptr if Je e gnreot-sreroot.loc(poot)
S = e.time < root.sendptr.time
fail else

The condition on the right-hand side requires that ther@ller messages in the message
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Figure 3.11: Passing messages in the wrong order.

queue for traffic between the source and the destinatiortitwcaf the message under
consideration. So there have to be messages in transitdliatriot been received at the
time the current message has been received.

@)
Example 3.4 (Wait at N x N). This compound event involves atpI collective operation
and deals with a problem associated with n-to-n operatsuns) asviPI_Allreduce Since
each process involved in such an operation has to send tollaswe receive from every
other process, no process can leave the operation untiashg@tlocess has entered it. So
there is an inherent synchronization that can introducgfsegnt waiting times.

The compound event describes the frequently occurringtsito of reaching an n-to-n op-
eration at different points in time and thus introducing esidable synchronization over-
head. The starting point is now the lag®ICExit event of anMPI_Allreduce operation in-
stance. This is expressed by the following root predicaitegubhiempicoll() function:

type(root) = MPICEXxit A
mpicoll(root) # () A
root.req = MPI_Allreduce

The compound evenf{root}, F, E;} consists of three fractions: the root fraction
({root}), the set ofMPICEXxit events belonging to thPI_Allreduceinstance [;), and the
Enterevents of that instancdZ). FE; is instantiated using thewpicoll() function. Then
E5 is computed by tracing back tleterptr attributes ofE;. For conveniencel; .attr is
used as a shortcut fdw| Je € E; : e.attr = v}.

E, = mpicoll(root)
Ey.enterptr if  de;,e; € Ey.enterptr @ e;.time # ej.time

E2 = .
fail else
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Of course, this compound event matches nearly eM#lyAllreduce instance because the
operation is almost never entered at exactly the same tinddfetent locations. How-
ever, instantiating this compound event allows the amoudtlacation of the occurred
synchronization overhead to be computed.

g‘ P wasted | ‘ Enter
2 .
F— B @ | vece
= wasted
®—————f-——- B
wasted
®—|[———- B
@5 _ _enterpr

time
Figure 3.12: Synchronization overhead of n-to-n collextiperations.

A good estimate of the synchronization overhead incurrethduhe execution of an n-to-
n operation is the execution time of the operation until @t participant has joined in.
Figure 3.12 shows the synchronization times for indivichatticipants. The vertical line
indicates the point in time when the last participant hagesiato execute the operation.
Everything left of the line is estimated to be overhead. hm&of the compound-event
specification, the total time wasted as a result of synchatitin can be conveniently writ-
ten as:

wasted = Z mazx(FEs.time) — e.time
ecFE>

3.8.2 OpenMP

In particular, Opemp-related performance properties based on waiting timesltneg
from barrier or lock synchronization can be readily handlsthg the compound-event
method.

Example 3.5 (Unbalanced Barrier). Similar to mP1 applications, in Opewr applica-
tions the threads of a team may reach a barrier instancefatatif points in time and thus
introduce undesirable synchronization overhead. As rarat earlier, the notion of col-
lectively executed operations as incorporated in the mapiglies to bothvpi and Opemp
in that it considers an instance of such an operation as d setgbe region instances con-
nected by constraints concerning the order of occurrender@number of participating
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locations. In both cases, a simple function delivers theob&kit events belonging to a
“collective” operation instance that has just been conggletin the case ofipi it was
mpicoll(), in the case of Openp it was ompcoll(). However, OperP provides no way
of identifying the region type solely based on the region easo as opposed tarI, the
compound events for Opg® must rely on theregtype() function. This leads to a root
predicate slightly different from Example 3.4:

type(root) = OMPCEXit A
ompcoll(root) # () A
regtype(root.reg) = Opemmp Barrier

The rest of the compound event looks exactly like Exampleadd, therefore, it is not
shown here. Detecting unbalanced Operbarriers may allow conclusions to be drawn
about the efficiency of, for example, scheduling strategmdied in a parallel loop.

@)
Example 3.6 (Lock Competition). This performance property deals with the situation that
occurs when one thread tries to acquire a lock that is in tlssgssion of another thread.
That is, the thread trying to acquire the lock invokesp setlock, before the current owner
releases the lock usimgmpunsetlock. Figure 3.13 illustrates this behavior in a time-line
diagram.

A

@ ' Enter
-% Q Exit
3 &1 root @ Alock

B

Rlock
‘4— ————————————— —%} omp_set_lock() - ©
ref
A 3
@ omp_unset_lock @ _ _enterptr _
........ lockptr .

< » time
wasted

Figure 3.13: Waiting for an Operp lock.

The compound event describing this performance propemsgists of three single-event
fractions {{root}, {r1},{e1}}, which denote the moment of lock acquisition, the mo-
ment of the preceding lock release, and the moment of egtéh@ Opemp function
ompsetlock, respectively. The root condition requires the root evenbe of the type
Alock:

type(root) = Alock

By following the pointer attributes emanating from the regeént, it is easy to locate the
remaining constituents, as is shown in the figure. Sine¢is the acquisition immediately
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after it has been released by eventroot.syncptr points tor,. Moreover,root.enterptr
points toe; because it is th&nter event of the enclosing region instance. However, a
complete characterization of this situation also imposestaints on the temporal order
of the constituents. That is to say, to be classified as ineffidehavior; is required to
take place prior ta, because otherwise the lock would already be available &athB. It
follows the formal compound-event specification:

ry = root.syncptr

root.enterptr if root.enterptr.time < ri.time
€1 = .

fail else

The time lost due to this situation can be obtained by sutdtigithe time stamp of; from
that ofr;. In addition, the specification allows the location of tldeé®a (= r;.loc), which
was the owner of the lock while thread B (root.loc) was trying to acquire it, to be exactly
determined and thus gives a better insight into the circantgs of the inefficient behavior
considered here.

3.8.3 Call Paths

As mentioned in Section 3.6.3, it is useful to know in whicli path the program is be-
ing executed when a compound event occurs. One way to okdipath information
is to simply ask for the inherited stack of a constituent é\aerd to extract the region
and call-site attributes. The drawback of this method is itraust be repeated for every
compound-event instance. To avoid this, a performancecmald take advantage of the
cnodeptr attribute introduced in Section 3.6.3. Since thedeptr encodes the call path
associated with aBnterevent by pointing to the call-path representative, the gath ex-
traction needs to be done only once for each represent&ivthe call-path extraction can
be easily separated from determining the call path of a camgh@vent instance. The lat-
ter is simply done by remembering theodeptr of one or more characteristic constituents
or their correspondingnterevents, which are reachable viaterptr.

This can be exemplified using thate Sendecompound event from Example 3.1. The
fraction of execution time that is wasted occurs duringMi_Recvinstance, whosEnter
event ise;. It follows thatp = e;.cnodeptr encodes the corresponding call path, which
can be obtained by queryirig-¢(p). The benefit of this method is that this needs only
to be done once for all compound events whose call path iesepted by. Note that a
compound event may also be associated with multiple catispat
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3.8.4 Compound-Event Instantiation and Constraints

The examples presented in the previous subsections ravealesiesting property of the
description method used here. The constituent definitidres @mpound event can be
divided into two parts. The first part is responsible for kog, i.e., instantiating, the
constituents of the compound event. The second part plaicksamal constraints on the
constituents that are essential for the performance pippey describe. These consider-
ations also apply to the root predicate. The root predicatebe divided into a condition
requiring a certain type and optional constraints if neagss

Writing the constraint part separately allows a clearetirtiion among different concerns
and improves the readability of the specification. Alsoseeof different specification parts
might become easier. For example, Example 3.2 might bettewiike this:

Root Type
Receive

Instantiation
s1 = root.sendptr
e1 = root.enterptr
es = sy.enterptr

Constraint
root.enterptr.reg = MPI_Recv A
sy1.enterptr.reg = MPI_.Send A
e1.time < es.time N
el c msl.loc(BQ)

The separation of instantiation and constraints will beduf® integrating compound
events into thesL specification language in Section 3.9.

3.9 Compound Events in ASL

The APART Specification LanguagesL [21] developed by th@ePART working group on
Automatic Performance Analysis: Resources and Took novel approach to the for-
malization of performance properties and the associateorpeance-related dataasL
provides a formal notation for defining performance prapertelated to different pro-
gramming models. By providing a general framework for thecgjication of performance
propertiesAsL both encourages the collection of a multitude of differearf@rmance prop-
erties among users and tool builders and also provides ew@teuthat can work as a basis
for performance-tool design.
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AsL allows performance-related data items to be referenceddaymof an object-oriented
specification modelAsL distinguishes between static data known at compile ting,(e.
information on source-code entities) and dynamic data rggée@ at run time (e.gGPU-
time summaries). In thasL terminology, a performance property represents one aspect
of performance behavior. To test whether such a propertydasemt in an application,
an associated condition must be evaluated based on thentpedormance data. The
confidence of a property specifies the reliability of the tastdition. If the condition is
evaluated as true, the severity of a property indicateglédive importance with respect to
other properties. Performance properties are specifiedlirusing thepropertyconstruct.
Figure 3.14 shows the usage of the property construct t@esept the overhead associated
with barrier synchronization.

PROPERTY synchroni zati on_costs (Region r,
Experi nent e,
Regi on rank_basi s)

{
LET

float barrier_time = summary(r,e).suns.sync_tine;
I N

CONDI TI ON: barrier time > O;

CONFI DENCE:  1;

SEVERI TY: barrier _tinme/duration(rank_basis,e)
}

Figure 3.14: Usage of thesL property construct.

The three parameters are the regiothe property refers to, the experimentwhich de-
livers the actual performance data, and the regiank_basi s, whose duration is the
yardstick to which the overhead in regionis compared. Th&ET clause assigns the
synchronization overhead to a local variable by accessiagbject-oriented performance
data of regiorr in experimente. The CONDI Tl ON clause requires this overhead to be
greater than zero, which is a reliable criterion, as inéiddiy theCONFI DENCE clause.
Finally, the severity is defined in tHf8EVERI TY clause as the fraction of the synchroniza-
tion overhead compared to the duration of the rank basis.

Unfortunately, the initiaAsL data model, as specified in [22], mainly concentrates on pro-
filing data, i.e. summary information, and does not take athge of the more detailed
information contained in event traces. The fine-grainedvvaé the execution behavior
provided by event traces can be used to identify hidden idieg, to detect program-
ming errors, or to trace back performance problems to secwde entities in a way not
supported by profiling data. In particular, the notion of gamund events indicating the
existence of performance properties is not part of thealt$L specification. But the very
general design oAsL permits the easy integration of this approach into the lagguand
data model, thereby requiring only minor extensions whiehpesented in the following
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subsections. The extensions, which are reflected in theaeéxisL version [21], can be
divided into three parts. The first part deals with fs syntax, the second part describes
how to specify abstractions, such as state sequences amepaitributes, using thesL
specification model. The third part explains how to integthe new language constructs
with existing ones. Finally, a small example illustratesitteffective usage.

3.9.1 Language Extensions
Expression Syntax

To be able to express state-transition operators, conditiexpressions are required. For
this reason, the grammar symleipris extended by adding a further alternative. In ad-
dition, a means to create a set from a list of single elementsavided. The empty set is
created by substituting an empty list for the symiederence-list Finally, theNULL literal

is introduced to indicate a void reference. The requiredngnar extensions are listed in
Figure 3.15.

expr is [...]
or cond-expr

cond-expr is if-part elif-part « [else-part]
if-part is | F’(C bool-expr) expr
elif-part is ELI F’(C bool-expr) expr
else-part is ELSE expr

set-expr is [...]
or ’{ reference-list}’

reference is [...]
or NUL

Figure 3.15:ASL expression-syntax extensions.

Compound-Event Specification

Compound events are specifiedasL using a new language constrpettern Its name is
motivated by thinking of compound events as event pattétsisyntax is defined in Figure
3.16. SinceasL is intended to specify compound events rather than to imgherificient

3In the figure|. . ] is used as an abbreviation for the unchanged parts of thauptiod rules as defined
in [22]
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matching algorithms, thpatternconstruct is designed according to the remarks in Section
3.8.4.
pattern is PATTERNp-namé(’ arg-list’) " {’
[LET
defx
N
p-roottype
p-instantiation
p-constraint
p-export

3

arg is typeident

p-roottype is ROOTTYPE': ident’;
p-instantiation is | NSTANTI ATl ON’:’ const-def
p-constraint is CONSTRAI NT "’ bool-expr
p-export is EXPORT [m-namg’:’ const-def«

Figure 3.16:ASL pattern-specification syntax.

It is possible to parameterize compound-event specificatiny declaring formal parame-
ters in thearg-list. These parameters, as well as the local definitions fromgheral LET
clause, can be used in the subsequent parts of the compweantspecification.

The ROOTTYPE clause contains the type of the root event. If it is neceskagaflow the
root event to have multiple types, a common base type candgtheye. The compound-
event fractions are defined in thédSTANTI ATl ON clause as constants. Note that frac-
tions consisting of more than one element have to be definad aset type. It is possible
to use conditional expressions here if a correct instaotiainly can be guaranteed by
evaluating a condition. If an instantiation step fails, thgression used in the constant
definition should evaluate tdULL. A condition representing additional compound-event
properties that are not needed for instantiation can beeglactheCONSTRAI NT clause.

The dual use of the instantiation and the constraint clausetore provides the opportu-
nity to separate conditions necessary for locating the @amg-event’s constituents from
those that only represent an additional characterizatioiciwis not needed to locate any
constituents. Note that this separation simplifies thagdaguse of compound-event spec-
ifications.

The EXPORT clause defines attributes whose values are computed fromotheound-
event constituents. The attributes can be accessed throagth objectf the pattern.
Match objects represent compound-event instances andlpraway to access character-
istic attributes of single instances. So the export claog#icitly defines a class to which
the match objects will belong and which defines those atgtuf necessary the class can
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be given a name-name

The root event as well as the complete event trace can benefedl in a compound-event
definition by the two keyword®OOT and TRACE. In a potential implementation these
keywords will be bound to the current root event and the etrace being investigated by
the search algorithm. The pattern construct is a usefulinmsgnt to increase the property
construct’s expressiveness, as will be shown later.

3.9.2 Event Types and Abstractions in ASL

TheAsL specification model allows the definition of classes andtions. The integration

of pattern-based performance properties requires theiti@fiof new classes to represent
event types and new functions to represent abstractiools asstate sequences and pointer
attributes. It is easy to specify a basic event model as &aah of ASL classes. As
opposed to the basic event model, state sequences as weallrdsr @ttributes need to
be defined as functions because they are calculated from eteats. However, doing
this requires a way of representing the order of events ia@etrFor this reason, another
intrinsic AsL function is introduced that maps an event to its predecestbin the event
trace it belongs to:

Event PRED(Event e);

This function does not have to be defined explicithaigL, since it is defined implicitly by
the event order produced by common instrumentation systelsiag the new expression
syntax it is easy to translate all previously defined statgiseces and pointer attributes
into AsL. Figure 3.17 gives an example of how to define a state seqergien stack) in
AsL. Figure 3.18 shows how to define a pointer attribyte {rptr) in ASL. The keyword
UNI QUE is used to uniquely select one element from a set. This isilpessince the
definition forces the set to have exactly one element.

The other abstraction can be defined in a similar way. Theqa@pf these examples is
to show that thensL language constructs provide the capability to expresslibgactions
needed for event-model enhancement.

3.9.3 Pattern Matches

The AsL pattern construct is useful to specify two things. Firsggecifies a compound
event, that is, a set of events being connected by someamhips and fulfilling some
constraints. This first aspect is collectively expressethieyroot-type clause, the instan-
tiation clause, and the constraint clause. Second, therpapecifies a clasa-nameof
match objects, which are computed from compound-everdniests and used to represent
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setof Enter Rs(Event e, Process p) =

| F (e == NULL)
{}
ELIF (typeof(e) == Enter AND e.process_id == p)
Rs(PRED(e), p) + { e}
ELIF (typeof(e) == Exit AND e.process_id == p)
Rs(PRED(e), p) - { f IN Rs(PRED(e), p) SUCH THAT
NEXI STS g I N Rs(PRED(e), p)
SUCH THAT g.tinmestanp > f.tinestanp }
ELSE
Rs(PRED(€), p);

Figure 3.17: Thdzs() function returning the region stack of a process.

Enter enterptr(Event e) =

| F (Rs(PRED(€e), p) == NULL)
NULL
ELSE
UNI QUE( {
f IN Rs(PRED(e), e.process_id) SUCH THAT
NEXI STS g IN Rs(PRED(e), e.process_id)
SUCH THAT g.tinmestanp > f.tinmestanp
1)

Figure 3.18: Theent er pt r () function returning thenterptrattribute.
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performance-relevant metrics, such as idle times. Thisrmkaspect is expressed by the
export clause.

This proposal defines an intrinsisL function to obtain the match objects computed from
all compound-event instances occurring in an event trace:

set of m-name
PATTERNLMATCHES( p-name( arg-list), setof Event trace);

The function takes two arguments. The first argument issinpattern provided with its
own argument list according to its definition. The secondiargnt is the event trace to be
analyzed, which is represented by a set of events. Wheniocédn is invoked thd RACE
keyword mentioned in the preceding section is bound to #tisBhe function returns the
set of match objects corresponding to all compound-evestaintes according to thesL
pattern.

Note that defining more than one pattern will lead to an oweeha
PATTERN.MATCHES() function whose return type depends on the first argument.
This is a consequence of the flexibility introduced by theagkglause. Another way
would be to restrict pattern definitions to a fixed set of exgubattributes. But this would
also limit the usefulness of patterns in property defingion

3.9.4 Example: Late Sender in ASL

This section contains an example of utilizing th&_ pattern construct to specify theate
Sendecompound event described in Example 3.1. ABe specification of this compound
event is shown in Figure 3.19. It consists of four fracti®®OT, s1, el, ande2, each
containing only a single event. The root event or fractidhésevent indicating the message
arrival (i.e., an event of typBecei ve), which is expressed by the root-type clause.

The other three events are the event of sending the messagié event of entering the
MPI_Sendregion ¢-), and the event of entering théP1_Recvregion ¢,). They are defined
in the instantiation clause using pointer attributes ($&@ Example 3.1).

The first subproposition of the conjunction in the constralause requires the root event

to occur when the process of the root event is being executeegionr . This is ex-
pressed by using the region staR& (Figure 3.17). Regiom is supplied as a parameter

of the pattern. Now the pattern is valid only fbate Sendeimstances occurring during
execution of regiom . The next two subpropositions require the region instamsesved

to beMPI_RecvandMPI_Send The last subproposition describes the necessary temporal
displacement between the two function calls. The exportsdanakes this displacement
accessible through an attributdl e_t i ne.
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PATTERN Lat eSender ( Regi on r)

{
ROOTTYPE: Recei ve;

| NSTANTI ATl ON:

Send sl = sendptr (ROOM);
Enter el = enterptr(ROON);
Enter e2 = enterptr(sl);
CONSTRAI NT:
EXI STS e I N Rs(ROOT, ROOT. process_i d)

SUCH THAT e. regi on == AND
enterptr(ROOT).region == MPI _Recv AND
enterptr(sl).region == MPI _Send AND
e2.timestanp > el.tinestanp;

EXPORT:

float idle_ tinme = e2.tinmestanp - el.tinmestanp;
}

Figure 3.19:Late Sendepattern specification iasL.

PROPERTY | at e_sender (Regi on r,
Experi ment e,
Regi on rank_basi s)

{
LET

float idle tinme = SUMmidle tine

WHERE m I N PATTERN _MATCHES( Lat eSender (r), e.trace);

I N

CONDI TI ON: i dle_tinme>0;

CONFI DENCE: 1,

SEVERITY: idle_tinme/duration(rank_basis, e);
}

Figure 3.20:Late Sendeproperty using a pattern.

3.9.5 Using Patterns in Property Definitions

The purpose of patterns is to make the very detailed infaona&iontained in event traces
available to property definitions. To meet that godl,ad e _sender property is defined
in Figure 3.20 using the pattern from Figure 3.19.

This property refers to a regianthat create$ate Sendeinstances during its execution.
The confidence is 1, since the criterion used here is safe s@Verity corresponds to the
time lost by the sum of allate Sendemstances. The time lost by individulahte Sender
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instances is exported by thell e_t i me attribute of the pattern.

Event traces provide a very fine-grained view of the perferceabehavior of a parallel
application. Based on this view, performance properti@s dannot be represented by
profiling data can now be specified in terms of compound evelRts this reasonAsL
has been equipped with the pattern construct, which allbsspecification of complex
performance properties by means of event traces.

3.10 Summary

The specification of compound events based on event-motaheement provides a sys-
tematic approach to locating inefficiency situations ofgtlat applications in event traces.
The central idea of model enhancement is to combine singdatewo abstractions that
represent dynamic program entities, such as region stackessages. The strength of
this approach lies in an understandable characterizatipartormance behavior using the
vocabulary of the underlying programming model, which gesented by the abstractions
defined during model enhancement.

The abstractions include state sequences, which repraseatts of a program’s execution
state as sets of events, and pointer attributes, whichsepteelationships between single
events as pairs of related events. It has been shown thatl mld@ncement provides a
suitable means to describe complex situations of ineffidiehavior inmpPI and Opemp
applications. Also, it has been shown that it is even posdiblcombine the enhanced
models for the two programming models into a hybrid model thable to deal with the
concurrent usage ofirl and OpempP. The next chapter describes the design of an auto-
matic performance tool according to the concept of compeaumht specification based
on event-model enhancement.



Chapter 4

Analysis of Performance Behavior

This chapter presents the design of an automatic perforetante XPERT (Extensible Per-
formance Tool) based on compound-event detection in exered. After a brief outline of
EXPERTS overall architecture, the chapter starts with a disarssf instrumentation and
event-trace generation. Next, the analysis process @duated as a transformation of trace
data into a property-oriented performance space. Afteyitha shown how a separation of
compound-event specification from the actual analysisgeg®teads to a modular and ex-
tensible tool architecture. A method of pinpointing pemi@nce problems and bottlenecks
through visualization of that space is then presented)iet by a detailed description of
the performance properties supported so far. Finally, bapter discusses limitations of
the current prototype and concludes with some ideas onduntiprovements.

4.1 Performance Behavior of Coupled SMPs

Combining multiplesmps into one parallel computer offers the opportunity to bsitdl-
able high-performance architectures from standard senmponents, which need not be
designed specifically for the scientific-computing markdbwever, this more economic
way of producing high-performance computers comes at tice pf a complex hierarchi-
cal architecture consisting of multiple shared-memoryasodistributed across an inter-
connection network.

Since the architecture exhibits a mix of distributed andathanemory, there are several
possible ways of using such a machine. The traditional nmgppi programming models
and hardware architectures suggests message-passingamed-snemory programming
as the models of choice. Most important among thosevemefor message-passing and
Opemvp for shared-memory applications. Indeed, one approachpioixhe hybrid hard-
ware design is the concurrent usage/ef and OpemP in the same application.

81
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However, as a result of the increased complexity both in-and software, performance
behavior tends to be more complex because communicationgudiffierent control flows
becomes more intricate. The increase in behavioral contplereates a need for advanced
performance tools that are custom-made to this class of abngpenvironments. In par-
ticular, automatic tools are desired in view of the large amaf performance data often
produced on such machines and the need to present perfamesuits on a high level of
abstraction to allow easy identification of performancebpems.

4.2 Overall Architecture

This section contains a description of the different congms of the EXPERT
performance-analysis environment and explains how theyelated to each other. The
complete environment is depicted in Figure 4.1. The difieteols are represented as
boxes with rounded corners and their inputs and outputse@resented as sheets of paper
with the upper-right corner turned down. The arrows illastrthe whole performance-
analysis process from instrumentation to result presientat

The EXPERT analysis process is composed of two parts: a semi-automaitic-level in-
strumentation of the user application followed by an auticrenalysis of the generated
performance data. The first subprocess is called semi-atiwbecause it requires the user
to slightly modify the make file. To begin the process, ther ssgplies the application’s
source code, written in either C, C++, or Fortranot®eARi [57, 58], which performs au-
tomatic instrumentation of Opem constructs and redirection of Opep-library calls to
instrumented wrapper functions on the source-code lenstrumentation of user functions
is done either on the source-code level using [69, 70] or using a compiler-supplied pro-
filing interface. Instrumentation fanP1 events is accomplished with theP1 [52] wrapper
library, which generate®Pi-specific events by intercepting callsh®i functions. All the
MPI, OpemP, and user-function instrumentations call #®LOG run-time library, which
provides mechanisms for event-record buffering and tfdeereation. At the end of the
instrumentation process the user has a fully instrumented.gable.

Running this executable generates a trace file inethie0G format. After program ter-
mination, the trace file is fed into tteXxPERT analyzer. The analyzer does not operate on
the raw trace file, instead the analysis is carried out in $esfithe enhanced event model
defined in Chapter 3. For this purpogPERT useSEARL [75], which is responsible for
mapping the raw trace file onto the enhanced event moslekL provides a high-level
API to event traces and offers random access to events inclydimger attributes and
states from state sequences. Thus, the calculation ofsggqteences and pointer attributes
is done byEARL. After analysis has been completed, the analyzer geneaatesaly-
sis report, which serves as input for thePERT presenter, the component responsible for
analysis-result presentation.



4.3. EVENT-TRACE GENERATION 83

Semi-automatic

N Instrumentation
User Program User Program
> OPARI/
Source Code TAU Instrumented
Source Code —B
PMPI
N J Wrapper
— Library
Compiler/ [T
Instrumented [« Linker
Executable < povp L
A
Run-Time
and
Wrapper
Library

EPILOG

run Run-Time
Library

v | Automatic Analysis |

AN N N

EXPERT _
Analyzer =
Trace File 4 Analysis EXPERT
Results Presenter
EARL

N/

\ A

Figure 4.1:EXPERT overall architecture.

Currently, the software necessary to generate event theebeen successfully installed
on two parallel computers witampP nodes: theec-basedzampano [27] and thelITACHI
SR8000+1 [49]. Instrumentation is done ammpano and on therR8000+F1 with the
unpublished profiling interface of theci compiler [64] and of the proprietamyITACHI
compiler [37], respectively. The analysis componentsX#ERT run on Linux.

4.3 Event-Trace Generation

The analysis process relies on event traces as perforntataesource because event traces
preserve the temporal and spatial relationships amongithdil events. These relation-
ships are necessary to detect the presence of many intgr@stiformance properties in
the target application. Event traces as generated by thremented application represent
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the program execution on the level of the basic event modealeéined in Chapter 3.

4.3.1 Data Format

The event traces generated in this environment are conipliim the portableEPILOG
(Event Processing, Investigating, and Logging) binargdrdata format. TheriLOG for-
mat was designed as part of this thesis to represent thedaasit model from Section 3.6,
that is all event types from the hybrid model but without anynper attributes.

TheEPILOG format is suitable to represent the executionsief, OpempP, or hybrid par-

allel applications distributed across one or more (pogddnige) coupledsMp systems.

In addition to coupledmps, target systems also can be meta-computing environmgnts a
well as more traditional non-coupled or nertP systems. It maps events onto their loca-
tion within the hierarchical hardware as well as onto theicess and thread of execution,
that is, an event location is described by a tuple (maclam@, node, process, thread), as
required by the model.

Furthermore EPILOG supports storage of all necessary source-code informatiterms
of files, regions, and call sites. In addition to a name andusicescode location, which
consists of a file name and a range of lines in that file, sococke regions can be distin-
guished by a region-type attribute that indicates whethegéon is a function, a loop, or
an OpemPp construct, and if so, which one. Also, eaefterevent is able to carry call-site
information including a file and a line from where the regioasrentered.

Although not used in the current prototypeeXPERT, theEPILOG format offers the option
of recording hardware performance-counter values for €aghandExit event. The pre-
defined semantics of possible performance-counters gamelsto the counters provided
by pcL [9] (Performance Counter Library). The counters covereddycomprise a broad
range of common performance counters that provide infaomain events referring to the
memory hierarchy, to instructions, to the status of fun@iaunits, and to ratios computed
from a combination of multiple counters.

4.3.2 Instrumentation

The instrumentation of a program occurs on multiple levélse source-to-source transla-
tor oPARI performs OperP directive andapPi call transformations on the source-code level
to expose Opeawr parallel execution to therPILOG run-time systemOPARI both inserts
calls to the run-time system before and after directivesraddectsari calls to wrapper
functions generating events related to lock synchroromadndaPi entry and exit.

OPARI supports theeoMp [58] monitoring interface that can be implemented by défer
performance tools to support a variety of performance nreasent tasks for Opesp.
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The poMP interface defines the points in the control flow of an Qperapplication that
trigger apomP interface call. The implementation of that interface mustplbovided by

the respective performance tool itself. Tihemp library included inEXPERT was the first
implementation of theeompP monitoring interface. To be able to trace Openapplica-
tions, the implementation &PILOG is thread safe, a necessary precondition not satisfied
in many traditional tools.

Instrumentation targeting the interception of user fusrtsi occurs either on the source-
code level usingAau or during compilation. The compiler, which must provide afpging
interface defining functions called upon function entry &xd as well as program start
and termination, inserts calls to that interface into theatbcode. The interface is imple-
mented by the&PILOG run-time system. However, currently neithi@wu nor thepGl and
HITACHI compilers support efficient call-site instrumentationd dr@nce theenter events
carry no call-site information. For this reason, a call pgamputed byEXPERT may actu-
ally represent a set of call paths differing only in call site.g., line number of a function
call).

Finally, the last level of instrumentation is performedidgrlinkage of different libraries,
which are actually combined into one single library. TPl wrapper library, which
is based on theapi standard profiling interface, intercepis! calls and redirects them
to PmPI functions, while generatingPi-specific events before and after calling thepri
function. As already mentioned, tlr®MP run-time system and wrapper library provides
an implementation of theomp interface and transforms calls inserteddsaRr!i into calls

of the EPILOG run-time system to generate Opanspecific events. ThEPILOG run-time
system itself is responsible for event-record creatiotffebimg, merging of local traces,
and post-mortem synchronization of local time stamps, asrd®ed in Section 4.3.3.

4.3.3 Clock Synchronization

Not all parallel computers witemP nodes provide hardware clock synchronization among
different sMP nodes. In these cases, their local clocks may vary in offisdtdaift at a
given moment. Th&PILOG run-time system addresses this with software synchraoizat
to ensure the correct precedence order of distributed €v&hts is especially important in
view of point-to-point communication to preserve the cor@der of messages.

Instead of adjusting the local clocks during run tireejLOG performs post-mortem syn-
chronization of local time stamps when merging local eveatds into a single global
event trace. For this reasoBPILOG conducts run-time offset measurements based on
the remote clock reading technique [15] once at progrant atat once at program end.
Since the measurement module needs toall functions, the measurements are taken
immediately aftempi has been initialized and immediately beforel is finalized. The
synchronization occurs in an asymmetric fashion in thatlonal master clock provides
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the time for the remaining local slave clocks. Each slavelsenrequest to the master at
a timesy, the master responds to the request by sending its curreadttimme m, and the
slave receives the response at a tsmeThe slave time corresponding to the master time
m IS estimated as:

s:=81+ (s9 —51)/2

The offset is computed as the differenece— s. To minimize the effect of asymmetric
message delaygPILOG applies a statistical approach that executes a series cfages
exchanges and takes that one with the minimum difference s;, which is assumed
to have a minimal and therefore symmetric delay. After paogtermination, each slave
has two pairgs,, 0s) and (s., o.) which contain the local time together with the offset
to the corresponding master time once for program start acd tor program end. The
post-mortem synchronization algorithm assumes that atlks have a constant drift and
that they can be described in terms of a linear function basedn initial offset and a
constant decline. Based on this model each slave time stampe easily mapped onto
the corresponding master time:

(0c — 04)

m(s) = s+ (50— 54)

% (s — s5) + 05

To circumvent the effects of externmarp [56] synchronization of local system clocks, the
measurements can refer to the cycle counter instead of gtemsyclock, whose drift rate
may be adjusted at regular intervalsnoyp.

Of course, the assumption that the local clocks are pacddandifferent but constant drift

is only an inaccurate approximation, since the drift mayngeaas a result of temperature
variation. Experiments [76] onAM pano suggest that the accuracy that can be achieved in
this way allows the calculation of the correct precedenamessage events for a program
run time of at least a few minutes, that is, during this petloel deviation lies below the
network latency ofi5..s. While this proved to be sufficient for the applications ereed

in Chapter 5, in the absence of a global hardware clock a ptamutool should rely on
alternative software solutions, such as the controlle@c&dglock [65].

4.4 Analysis Process

The actual trace analysis is done by thePERT analyzer. The analysis process is based
on the notion of performance properties. A performance g@nypcharacterizes one aspect
of the performance behavior of a program and can be checkadskby of conditions. For
every performance propertysaveritymeasure is provided, whose magnitude specifies the
influence of a property on the performance behavior in r@etio other properties. In ad-
dition, the conditions used to prove the existence of a perdmce property are associated
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with a confidencevalue indicating their reliability. Note that a performangroperty does
not necessarily denote negative, that is, inefficient bienav

In the context 0EXPERT, the presence of a performance property is checked by Igd&im
occurrences of a compound event. The severity is the inafibgt-time fraction associated
with that compound event, and the confidence is the reltgbili the compound-event
specification to match the desired behaviorEKPERT, the confidence is used to inform
the user about the reliability of the analysis process va#ipect to that property. Itis given
as a string value (e.gnaxor mediun).

The analysis process transforms low-level trace data imaléidimensional performance
space consisting of three dimensions: performance pygpeil path, and location. Per-
formance properties are specified as compound events irs tefithe enhanced hybrid
event model from Section 3.6. Instead of accessing the exexre directly, theEXPERT
analyzer use€ARL to map the event trace onto the enhanced model. The analgsis p
cess is then executed with respect to the enhanced-model 2iePERT determines for
each performance property the time spent on a behavioedetatthat propertyeXPERT
measures the time separately for each location and callgrathnserts the results into a
three-dimensional data structure representing the predoce space.

The user controls the analyzer, which is implemented in &yff], either from the com-
mand line or using &uUl (Graphical User Interface(Figure 4.2). Thesul allows the
selection of particular performance properties for arialygile ignoring the rest.

" EXPERT:a.ely

(=-Early Reduce
I=l-Late Broadcast
=l-wait at Mz M

(=l Synchrorization
E- 0P
Syhichronization
L El-1dle Threads

[OmPI | 2 %4 |Ready |

Figure 4.2:Gul of theEXPERT analyzer.

4.4.1 Representation of Performance Behavior

Performance behavior is represented in a three-dimerigp@nformance space with the
dimensions of performance property, call path, and locafide first dimension describes
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the kind of behavior. The second dimension describes b®#oiirce-code location and the
execution phase during which it occurs. Finally, the thimdehsion gives information on
the distribution of performance losses across differeatg@sses or threads, which allows
conclusions to be drawn, for example, on the workload ba&anc

The performance space only describes the structure in vig@dbrmance behavior is rep-
resented. The actual performance behavior is a mappingrtaps each point (property,
call path, location) of that space onto a value indicatiregaktent to which a performance
property is present with respect to a call path and a locafibis mapping is calledever-
ity and expresses this extent in terms of the time spent on aplartiproperty while the
program was running in a particular call path and at a pderdacation.

4.4.2 Interval Sets

The run-time events of a parallel application occur on midttime lines - one for each
control flow. HenceEXPERT describes the severity of a particular performance behavio
in terms of wall-clock interval sets that may be distribusedoss different time lines.

However, as already mentioned, the term location denotestaat flow and not a&pPu. To
be able to compare wall-clock intervals across differenatmns in a reasonable fashion,
EXPERTrequires that different locations never run on the samesimultaneously, that is,
processes or threads running on the same node do not share@ru. This requirement
comes from thinking of a wall-clock interval used by one libma as an interval of that
location’s resource usage, which should not overlap withtlar location’s usage of the
same resource. Therefore, all locations are regarded ag beipped to differentPus at
any time.

Since scheduling policies on most systems are aimed atdatatine work across different
CcPus, the requirement can be assumed to be approximatelyddlfflan application does
not run more threads tharpus reserved for that application, that is, an application®©wn
as manycpus as it runs different control flows (i.e., locations). A mdexible solution
could be achieved in the future by integrating events rdlede€pPu acquisition and release
to monitor thecPu usage more exactly.The time model applied bgxPERT is based on
the assumption of exclusiveru reservation, that is, the application exclusively owns all
CcpPUs from program start to program termination.

The severity mapping describes the performance behavternms of time spent on a par-
ticular behavior. The range of the severity is calleddirerreservation time.

Definition 4.1 (CPU-Reservation Time).The cpu-reservation timed of an event trace
E = {ei,...,e, } is the Cartesian product of the sktof locations used ity and the

Linstrumentation for these events may have to be placed iogheating system.
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wall-clock interval from the very first to the very last everfitE.
A = [ey.time, e, .time] X L

An element of thecpu-reservation timet, /) € A is a tuple consisting of a time and a
location. o

Figure 4.3 shows the different time lines for a hybkié1/OpemmP application running
two processes with four threads each. The figure shows oreelith@ per location. The
whole (spotted) rectangular area constitutesdhe-reservation time. The dark-gray bars
indicate the times when code is executed, whereas thedigtytbars indicate idle slave
threads as a result of sequential execution. Note that tieepses are launched at slightly
different times by the parallel environment.

[%2] .
S CPU Reservation
5 g Idle Thread
S o .

§ . Execution

a

Execution phase

associated with
a particular call
path

Process 1

Figure 4.3: Time model ofXPERT.

The severity of a particular performance behavior is dbscriin terms of interval sets
spent on that behavior. Interval sets are sets of wall-dloigkvals that may be associated
with different locations because a behavior may take plaogoae than one location.

Definition 4.2 (Simple Interval). A simple interval([¢,t5],1) C A is a closed interval of
A that includes only elements from one location:

([t ta], 1) = {8, 1) € A £ <t <ty)

o

Definition 4.3 (Non-Overlapping Simple Intervals). Two simple intervals;, s, C A are
non-overlappings; > s, if and only if the interior of their intersection is empty:

—_—~—
S1 B 8o =4 81U82:®
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A particular behavior may cover multiple simple intervafsdifferent locations. For this
reason, the notion of anterval setis introduced.

Definition 4.4 (Interval Set). An interval setD is the finite union of non-overlapping
simple intervals;; C A:
D:Usi, Vi.j€lp: 1#j = sMS;
i€lp
I denotes the index set of all member intervals.

<

Note that every union of simple intervals can be rewrittera asmion of non-overlapping
simple intervals.

Definition 4.5 (Non-Overlapping Interval Sets). Two interval setd);, D, C A arenon-
overlapping D; 1 D,, if and only if the interior of their intersection is empty:

A
DlNDQ p=— D1UD2:®

<o

Definition 4.6 (Sum of Interval Sets). The sum of two interval set®, D, C A is their
union:

Dy @ Dy := Dy U D,

<

Definition 4.7 (Difference of Interval Sets). The difference of two interval sef3,, D, C
A, Dy C Dy, is the closure of their set difference:

Dl e D2 = (Dl \ D2)

<

The user of a performance tool may wish to compare multigkrval sets and may there-
fore be interested in their size (i.e., their amount).

Definition 4.8 (Amount of a Simple Interval). Theamount|/| of a simple interval =
([t1,t2],1]) is the difference of, andt:

|]| I:tg—tl
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Definition 4.9 (Amount of an Interval Set). Theamount|D| of an interval setD is the
sum of all of its member-interval amounts:

D= lsil

i€lp
o

Note that Definition 4.9 relies on the definition of intervatsas unions of non-overlapping
simple intervals. It follows that the amount of theu-reservation time is:

|A| = (e, .time — ey.time) * | L|

Thecpureservation timel can be divided based on the dynamic call graph. Each call path
n (i.e., node in the call graph (3.5)) defines an interval seinduvhich the program was
running exactly in that call path and not in a successor edh fi.e. cpath(n) o). To also
extend that mapping to the time during which Operslave threads remained idle as a con-
sequence of sequential execution, an intef\al ¢,], slave) of idle slave threads (empty
boxes in Figure 4.3) is associated with the same call patheamterval([t,, t5], master)

of the corresponding master thread (see the hatched bogumg=4.3).

4.4.3 Performance Space

Performance behavior takes place in a property-orientefdnpeance space. The perfor-
mance space provides a coordinate system in which perfagna@havior can be repre-
sented. It is called “property oriented” because it corgadine performance property (i.e.,
the kind of behavior) as a separate dimension, which alla¥fsrent behavior to be ac-
commodated in one representation.

Definition 4.10 (Performance Space)lLet B be a set of performance propertigs,an
event trace L the respective set of locations (Definition 3.17), aid= N(F) := {e €
E| e.cnodeptr = e} the set of call paths (i.e., call-path representativesieddy events
contained inZ. Theperformance spacP = P(B, E) is the Cartesian product:

P:=Bx N xL

o

The first two of the dimensions in the performance space aam@ed in a tree hierarchy:
the performance properties in a hierarchy of general anct mpecific ones (Figure 4.8),
the call paths in a prefix hierarchy. In addition, the locasican be extended to form a
hierarchy similar to the property and call-path hierarshigach element< L denotes a
single control flow (i.e., a thread) and, therefore, all tawas reside on the same hierarchy
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level. However, each thread is associated with a processyiamode, and a machine (see
Definition 3.17 and Figure 4.4), which constitute groupsochltions on different hierarchy
levels.

The current prototype cEXPERT supports only tree hierarchies with a single root node.
That means there is exactly one root property, one root eall,and one root machine.
Also, each node in a hierarchy has a unique parent so thati¢rer¢hies can be conve-
niently displayed using standard tree browsers. For tlgisae, in the following, the call
graph is referred to as the call tree. Support for multiplenrzes as part of a hetero-
geneous environment might be a useful extension in thedund is therefore already
integrated in the event-location model (Definition 3.17).

Definition 4.11 (Tree Hierarchy). A tree hierarchyon a setH is a binary relation< on
H that satisfies the following properties:

YVoe H: a<a 4.1)
YVa,be H: a<b = b<£a (4.2)
Ya,bce H: a<b N b<c = a<c (4.3)
JreH:NaeH: a#r = r<a (4.4)
Va,b,ce H: b<a N c<a = b<c Vv (4.5)
c<b \%
CcC =
Lets,p e H:
root(H) = r
t if A H: A
ischild(s,p) = rue | p<s Fa € p<a a<s
false else
children(p) = {se€ H| ischild(s,p)}

o

Thus, a tree hierarchy is a strict partial order (4.1 - 4.3) with one least element
root(H) (4.4). In addition, each element has a unique path to the wdoth implies that
the associated tree graph does not contain any cycles (4.5).

The set of performance properties is organized in a geaatan-specialization hierarchy
(.e., generak specific), which is depicted in Figure 4.8. The hierarchylbesn explicitly

established by specifying a parent for each of the perfoomamoperties except for the
root property. Since it seems natural that a more specifiavaehonly takes place when
a more general behavior takes place as well, the intervahssiciated with the more
general behavior contains the interval set associated théhmore specific behavior as
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a subset. This relationship is a precondition for placenoéra property as a child of
another property. Note that in general, however, the suletsionship would allow the
arrangement of properties in a fashion violating Condi{.s).

Next, the set of call paths is organized in a prefix hieraréhgall patha € N is smaller
than a call patll € N (i.e.,a < d) if and only if a is a true prefix ofi:

a<d < cpath(a)o(ry,c1)o...0(ry, c,) = cpath(d), n>1 (4.6)

In contrast to the latter two hierarchies, the location dmeny exists only in an implicit
manner, since all locations represent threads and thuadp&dahe same level. The other
hierarchy levels (i.e., processyp node, and machine), as introduced in Definition 3.17,
can only be derived by aggregation. To make the locatioralsly explicit, the set of
locationsL can be extended to represent the whole hierarchy.

Definition 4.12 (Hierarchical Location). A hierarchical location/ € L is either a plain
location/ € L or it is an aggregate of plain locations.

L= L U (i.e., threads)
{(m,s,p) | 3I(m,s,p,t) €L} U (i.e., processes)
{(m,s) | 3(m,s,p,t) €L} U (i.e.,sMP nodes)
{(m) | 3(m,s,p,t)e L} U (i.e., machine)

<&

L denotes the extended location set including the upperroieydevels, as depicted in
Figure 4.4. Each node in the hierarchy corresponds to oneeeieofL. The upper levels of
the hierarchy are aggregates of their children, they doemmesent independent locations
of single control flows.

SinceEXPERT requires each hierarchy to have exactly one root elemeatiast part of
the union in Definition 4.12 contains exactly one element.oArfal characterization of
the obvious tree hierarchy can, similar to call paths (4&)pased on a prefix criterion.
After extending the set of locations, it seems natural to eldend the performance space
to cover the whole location hierarchy.

Definition 4.13 (Extended Performance Space)Let B be a set of performance proper-
ties, £ an event tracel, the respective set of hierarchical locations (Definitiob23, and
N = N(E) :={e € E| e.cnodeptr = e} the set of call paths (i.e., call-path representa-
tives) visited by events contained it Theextended performance spafe= P(B E)is

the Cartesian product:

P.=Bx N x L
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Figure 4.4:.EXPERTS location hierarchy.

Severity

The EXPERT analyzer represents the performance behavior containaal @avent trace as
a mapping that maps each point in performance space ontaeamahset within thecpu-
reservation time.

Definition 4.14 (Severity). The severityof an event tracé” with respect to a set of per-
formance propertie® is a mappingsev() that maps each point in the performance space
P = P(B, E) onto an interval set within thepu-reservation time:

sev : P — 24
(b,n,l) — D

(b,n,l) is mapped onto the interval sé spent on behavior associated with propérty
while the program was running in call pathat location/. D includes the time spent on
behavior associated with more specific properties as a sudosg does not include any
time that has been spent on call paths other than

Vby,by € B: by < by = sev(by,n,l) C sev(by,ny,l) (4.7)
Vny,ne € N : ny # ng = sev(b,ny,l) < sev(b,ng, 1) (4.8)

—

Also, D contains only intervals occurring at locatitin

sev(b,n,l) C ([er.time, e, .time], 1) (4.9

o
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Condition (4.8) implies thaD, in particular, does not include any time that has been spent
on call paths reached from that is, any call paths: with n < m. Also, the interval set
associated with one point in the performance space corgaigsimple intervals from the
same locatiorh. However, interval sets covering multiple locations wal thscussed when
dealing with hierarchical locations.

Since the storage of interval sets covering a large numbereshber intervals has space
requirements that come close to those of event traces; RT computes only the amounts
of these interval sets and not the interval sets themsdh@sever, as will be shown later,

the restriction to amounts imposes constraints on the shighese intervals.

Definition 4.15 (Extended Severity).Theextended severitsev() of an event trac& with
respect to a set of performance propertiess the original severity function (i.escv())
with an extended domain covering the extended performagreee® = P (B, F):

Sev : 7/5 — 24
A sev(b,n,l) if lelL
b,n,l
(bn0) = { 0 else
o

Similar to the call-path hierarchy, the severity of an aggte location is defined without
covering any child nodes in the location hierarchy. Howgsarce a location aggregate
naturally does not have any severity not coming from any othildren, the extended
severity assigns the empty set to all aggregates in theidochierarchy.

Inclusion and Exclusion

The extended severity function provides arguments initlusivesemantics and arguments
with exclusivesemantics. That is, the severity either covers an argumehitding all its
children in the hierarchy or excluding all its children.

The property is interpreted using inclusive semantics)(4hat is, the interval set asso-
ciated with a property contains the interval sets of all ge@alizations as a subset. As
opposed to properties, the call path and the location aeegreted using exclusive seman-
tics. The severity of a call patthhnever includes a successor call pattwith n < m (4.8)
and the location only delivers a non-empty interval if it ist mn aggregate (Definition
4.15).

However, the user who is aware of the hierarchical orgaiozatf the performance space
may wish to explore the severity of one hierarchy elementlation to other hierarchy

elements in a more flexible way. For example, the user may wigmow to what extent

the severity of a performance property is not containedsrstecializations or may be
interested in the sum of the severity of all threads beloggim given process.
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To answer these questions it is necessary to know the sewéathierarchy element with
the semantics of choice. That is, the severity function khba able to deliver both the
inclusive and exclusive severity of a hierarchy element.

Definition 4.16 (Variable Severity). Thevariable severitysev ¥ () of an event tracé
with respect to a set of performance properties an extended severity mapping that in-
terprets itgcth argument either with exclusive or inclusive semantiqsetheling on whether
the tuple(z, y, z) carries areori in its kth position:

aon ('T’y7z) .

sev 24

é
— D

)

(b,n,l

~—

The variable severity is derived from the extended sevé@dsfinition 4.15):

sev' ¥ (bn, 1) = sl o @ se™(enl) (4.10)
c€children(b)
sev™ (b 1) = sev?(b,n,l)
sev®(b,n, 1) = sev?(b,n,l)
s (bnl) = s ®bnl) & P sl (411)
c€children(n)
sev'®(b,n,l) = sev(b,n,l)
seo(b,n,l) = sew90bnl) & P sV bn0) (4.12)

cechildren(l)

<&

Note that the variable severity supports the charactévizatf performance problems and
bottlenecks as subsets of the performance space by cogpiatiexample, the severity of
subtrees in the call-path hierarchy.

As already mentioned, to circumvent the storage of highdpelised interval setsXPERT
computes onlysev(P)|, extends it tdsev(P)|, and derivessev ™= (P)| from it. How-
ever, computings/eﬁ;myz(ﬁﬂ requires computing the amount of interval-set expressions
based on the amount of the operands involved. Unfortunatalyis only possible if the
operands are non-overlapping in the case of an additiorterval sets or if the subtrahend

is a subset of the minuend in the case of a subtraction ofvmteets. LelC, D € 24 be
interval sets:

CeD|=|C|+|D] & CxD
CeD|=|C|—|D] & DcC
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For this reason, it is necessary to postulate that the iateets to be added in Equation
(4.10), (4.11), and (4.12) are non-overlapping and thah loperands of the interval-set
subtraction in Equation (4.10) are connected by a subssioethip. Leth be a perfor-
mance property, a call path, and a location:

by, by € children(b) : by # by = sev"¥? (b, n,1) 1 sev ™ (by,n, 1) (4.13)
Vny,ny € children(n) : ny # ny = se0"(b,ny, 1) 1 sev (b, ny, 1) (4.14)
Viy, Iy € children(l) : 1y # Iy = sevW(b,n, 1) a1 sev(b,n, )  (4.15)

Ve € children(b) : se0™ (¢, n,1) C se0"*2) (b, n, 1) (4.16)

Conditions (4.14) and (4.15) are trivially satisfied as asamuence of (4.8) and (4.9).
Similarly, Condition (4.16) follows from (4.7). Only Corttbn (4.13) must be ensured by
carefully defining the performance properties such thactiiklren of a property always
have a non-overlapping severity. Note that this imposestacgon on property coverage,
which may be subject to improvement in a future versioEX®ERT.

With Conditions (4.13 - 4.16), it is possible to complifev“**(P))| solely based on
|sev(P))| and thus onsev(P))|:

0@ b0, 1) = s om0 - Y 5@ (e,n, 1))
c€echildren(b)
50D (b,n,0)] = |50 (b,n,1)]
1560 (b,n,1)] = |sev'?(b,n,1)]
e b, = [T om0+ D [se (b, e, 1)
cechildren(n)
|50 (b,n, 1) = [sev(b,n,1)|
[sev (b0, ) = [s 0D+ Y s (bn, o)

cechildren(l)

Summary

EXPERT represents the performance behavior as the map@h@“y’z) (73)| that maps a
point in the performance space defined by the property, a#l,@nd location coordinates,
onto the amount of apPu-reservation time interval set. The semantics of each ¢oatel
may be either inclusive or exclusive depending on what tlee wsuld like to know.
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The analysis process is an automatic transformation of antéxace into this representa-
tion and is performed in three steps. First, it computes theuat of the simple severity
(Definition 4.14), extends it to include hierarchical Idoas (Definition 4.15), and finally
adds inclusive and exclusive semantics for each coordofdbe performance space (Def-
inition 4.16). Note that the structure of the performancacgpalso depends on both the
event trace and the set of performance properties, whictdepiendent of the event trace,
but which may be changed or extended, as will be explained lat

E,B Y seo(P))| 2 |5eu(P))| - |sev @ (B)))

Note that most of the values obtained as a result of step @) net be precomputed by
the analyzer. Instead, they can be computed on demand byaberer.

444 EARL

EARL (Event Analysis and Recognition Language) is a class fbtfahat offers a high-
level interface to aEPILOG event trace. The interface provides random access to ateve
including the state sequences and pointer attributes deiimthe enhanced event model
(except for the auxiliary ones). To give access to stateesgrps and pointer attributes,
EARL performs the calculations described in Chapter 3. In anldiiARL provides access
methods to obtain static information on the event traceh siscthe number and kind of
event locations, and information on source-code entisigsh as regions and files. Also, it
gives the user the ability to traverse the dynamic call tree.

The initial prototype ofEARL [75] developed earlier by the author provided only limited
assistance in the analysis mPI applications. The current version containedEXPERT

is the result of a substantial redesign and many enhancepiealuding support fomPI
collective communication, Operp, hybrid programming, and a method of associating
events with the dynamic call path.

EARL is implemented as a C++ class, whose interface is embeddiee Rython [7] script-

ing language. The Python binding has been automaticallgrgéed usingwIG [6]. The
class representing an event traseent Tr ace allows random (read) access to events by
supplying the event position as a parameter. The eventiposif an event; is just the
index:. The access methaeivent () returns for each event a Python dictionary con-
sisting of a set of key-value pairs, where the keys repretenattribute names and the
values represent the attribute contents. Thus, the agrimlue can be obtained using the
attribute name as the key (e.g[,| oc] ). Whereas pointer attributes present themselves to
the user the same way as regular attributes do, state sexpumm@amplemented as methods
of Event Tr ace that take an event position as an argument.

2Since it provides a notation to specify compound eventsistheen named a language.
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States sequences and pointer attributes provide eveyta®reéferences expressed in terms
of event positions. Thus, the state-sequence methha@ttk() (i.e., the region stack) al-
ways returns a set of event positions and a pointer attrdjuseendpt r | always contains

a single event position as a value.

To provide efficient random access to events and, in paatictd support an efficient search
for compound events by sequentially traversing the evewetfrom the beginning to the
end, EARL uses two different buffer mechanisms: the history buffett #re bookmark
buffer. However, before delving into the details of both m@wsms, the general event-
access mechanism is explained.

When an eveny; is accessed, all its abstractions, that is, the overa# taand all pointer
attributes:;.ptr need to be computed. Recall that the working-set requiréfrean Section
3.3.3 requires that each stade and each pointer attribute.ptr can be computed solely
on the basis of the overall stage_; and one; itself, that is, on the basis of the working
setA,;. From the inductive definition of state sequences and poaitgbutes it follows
that to access an event EARL needs to take an overall stagg.; it knows and all events
from e, to e; to compute the abstractions relatecejo In the worst cases;, = &, =
{0,...,0}, thatis,EARL does not know any overall state prior¢@which requires reading
the event trace from the very beginning in order to compugnd its abstractions.

However, while traversing the trace file to compute all aagttons related te@;, EARL
computess; for each event; it reads on this way as a side effect. To utilize the work
done for one event accessARL is able to remembes; at regular intervals together with
the corresponding trace-file position and to store it in ddvigo that subsequent reading
can start at the closest in the buffer. In analogy to a bookmark used to remember a page
in a book, this mechanism is called the bookmark buffer. Nlo&t the distance between
bookmarks, which can be changed by the user, must be chossullyadue to potential
memory requirements.

Whereas the bookmark buffer accelerates subsequent exasgses by avoiding the ne-
cessity of reading the trace file from the beginning, expenfiie accesses may still occur.
For this reason, the history buffer accelerates accesss®tds and abstractions within the
recent past (i.e., the history) of an event that has just laeeassed. When the access to
evente; causes successive file accessa®kL remembers a small window of events in con-
junction with the overall state prior to the first event in thiedow. That is, after reaching
e;, EARL keeps in its history buffes;_,_, and{e,_,, ..., e;}, wheres + 1 is the size of the
window. Thus, it is possible to get all events including esa&nd pointer attributes from
the history window without any file accesses.

To minimize the space requirements of both buffer mechasisxrRL ensures that each
event is stored only once even in the case of two stereahds; with i # j andl’; NT; #

(. Also, to save memory the dynamic call graph is implementigghtsy different from
Section 3.6.3 in that aBvent Tr ace object maintains only one call graph, which reflects
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the most recent event that has been read, whereas otharcatbe obtained for arbitrary
events. Recall that the staerepresenting the call graph never shrinks in size. In aafditi
the call graph is internally represented as a tree, whichedses the time necessary to
locate the successor node of the current node.

4.4.5 Pattern Classes

The analyzer’s design follows a layered approach (Figus 4ts architecture is based on
the idea of separating the analysis process from the peaforerproperty specifications.
The analyzer operates on a set of property specificationshvaladhere to a common inter-
face that is independent of the actual property semanticaddition, the design establishes
a further layer by separating the property specificatioosffrequently used abstractions
(i.e., state sequences and pointer attributes), whichcaesaible through thearL class
interface.

Analysis Process

Property Specifications

Abstractions

Figure 4.5: The layered design of tB® PERT analyzer.

Performance properties are specified as Python classegwitedace is defined in a com-
mon base clasBat t er n (Figure 4.6). Hence, as long as the classes fulfill the common
interface, the analyzer is able to handle an arbitrary spatkrns. Pattern classes repre-
sent compound events to be matched against the event trdeeearmplemented using the
EARL language.

Thepar ent () method of thePat t er n base class is intended to express the hierarchi-
cal organization of performance properties in that all dagant implementations should
return their parent’s name in the hierarchy, which is noessarily the parent in the inher-
itance hierarchy. Whereas the property hierarchy is usedpeess an inclusion relation-
ship with respect to the severity (4.7), the inheritancednahy is used to give all pattern
classes a uniform interface. Tle@nfi dence() method should return the confidence
of the assumption made by a successful pattern match ab®wictturrence of a perfor-
mance property. The default confidence is maximum confidedote that the confidence

is always the same for a given pattern class and does notodfex characteristics of a spe-
cific match. Theseveri t y() method is invoked after the analysis has been finished and
should return the severity restricted to the property regmeed by that class, that is, a ma-
trix representingsev(b, n, 1)| for a variable call path € N and a variable locatiohe L
while the propertyb is fixed. Finally, the base class includes a methoaf i gur e()
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cl ass Pattern:

[...]

# return name of the parent property
def parent(self):
return None

# return the confidence
def confidence(self):
return ' max’

# return the severity matrix for this property
def severity(self):
return self. _severity

# launch a configuration dial og
def configure(self, parent):
pass

Figure 4.6: Python definition of the base cl& t er n.

to launch a configuration dialog for the input of patternesfie parameters prior to event-
trace analysis.

The analysis process follows an event-driven approachrdicgpto Algorithm 3.1. EX-
PERTwalks sequentially through the event trace and for eachesewgnt invokes call-back
methods of the pattern instances and supplies the eventaag@ament. A pattern can pro-
vide a different call-back method for each event type. Evemg EXPERT encounters an
event of typet, it invokes the call-back methods for typeof all pattern instances that
provide one for type.

A pattern class looking for occurrences of a compound evdhprevide at least one call-
back method for the root event. Then it tries to instantintg tompound event starting
from the root event, which is supplied as an argument. Duhimgprocess the pattern in-
stance may follow links (i.e., pointer attributes) or intigate states from state sequences.
After completion of the analysis process, the analyzer lajew (b, n, [)| for all combina-
tions of a property, a call pathn, and a locatiori and writes it to a file, which is used as
input for theEXPERT presenter.

Note that a pattern class may provide more than one call-betkod, which allows a
property implementation to be more flexible than is suggkbte Definition 3.27. For

example, a pattern class may collect additional statenmtion beyond that provided by
predefined state sequences.

Figure 4.7 exemplifies the concept of implementing perforceagproperties as classes by
means of the late-sender property (Example 3.1). The quoneing pattern class returns
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cl ass LateSender(Pattern):
"Late Sender"

def parent(self):
return "P2P"

def recv(self, root):
e 1 =self. _ trace.event(root[ enterptr’])
if (self. _trace.region(e_1['regid ])[' name’] == "MPl _Recv"):
s_1 = self._trace.event(root[’ sendptr’])
e 2 = self._trace.event(s_1[ ' enterptr’])

if (self. _trace.region(e_2['regid ])[ ' nane’] == "MPl_Send"):
idle_time = e 2['time’] - e 1['tinme’]
if idle_tine > 0 :
locid =e 2['locid]
chode = e_2['cnhodeptr’]

sel f. severity.add(cnode, locid, idle_tine)

Figure 4.7: Python class definition of thate Sendecompound event.

P2P as its parent because the behavior specified by that classpescealization of point-
to-point communication.

Every time theEXPERT analyzer encounters Receiveevent, ther ecv() method is in-
voked on the pattern instance and a dictionary containia@éheiveevent is passed as the
r oot argument. The pattern first tries to locate Eneerevente _1 of the enclosing region
instance by following the oot [ ent er pt r] attribute. After verifying that this region
instance is amMPI_Recy, the correspondingendevent is determined by tracing back the
r oot [ sendpt r] attribute. Now, the pattern looks for tiEaterevente_2 of the region
instance from which the message originated by followingsthi] ent er pt r] attribute.
The analyzer then checks whether the region instance froeremihie message has been
sent is arMPI_Send

After locating all constituents, the chronological difece between the twenter events
e_1 ande_2 is computed. Since th@PI_Recvhas to be posted earlier than te1_Send
thei dl e_ti me has to be greater than zero. If that is true, the measuretinaéas added
to the severity-matrix cell defined by the location and cathpofe 2 according to Section
3.8.3. After the analysis has been finished, each matrixcogitains the sum of all idle
times introduced by theate Sendesituation.

4.4.6 Performance Properties

Figure 4.8 shows the hierarchy of predefined performangegpties that are supported by
the current prototype ofEXPERT. The set should not be regarded as complete, but it is
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representative in that it shows the usefulness and fegibilthe analysis method and the
advantages of the tool architecture used to implement it.

MPI

Wait at N x N

—| Point to Point

Late Receiver

Messages in Wrong Order |

Late Sender

i

Messages in Wrong Order |

Sychronization

Explicit

Wait at Barrier

Implicit

—| Lock Competition

AP|

Wait at Barrier

Critical

Idle Threads

Figure 4.8:EXPERTS hierarchy of predefined properties.

The set of performance properties is split into two partse fitst part, which constitutes
the upper layers of the hierarchy and which is indicated biteMoxes, is mainly based
on summary information involving, for example, the totaéeution times of specialPi
routines, which could also be provided by a profiling tool wéwer, the second part, which
constitutes the lower layers of the hierarchy and whichdgciaited by gray boxes, involves
idle times that can only be determined by comparing the atiogical relation between
individual events. This is where the compound-event apgir@an demonstrate its full
power. A major advantage &xPERT lies in its ability to handle both groups of perfor-
mance properties in one step. A detailed discussion of thet imi@resting situations of this
second kind can be found in Section 3.8. Moreover, a way tenekthe predefined set by
adding custom-made property specifications is present&adtion 4.4.7. The following
briefly explains the performance properties that are ctigr@nplemented irEXPERT.
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Total. Time spent on program execution including the idle timedafesthreads during
Opemvip sequential execution. It corresponds to the intervals reavby the light-
gray and dark-gray bars in Figure 4.3. When a master threae®uted in an interval
([t1, t2], master) during a sequential period, all its slaves are assumed tuex@
([t1,t2], slave) and to pass through the same call paths as the master does.

Execution. Time spent on program execution but without the idle timesla¥e threads
during Opemp sequential execution. It corresponds to the intervals real/by the
dark-gray bars in Figure 4.3.

MPI. Time spent omPI API calls.
Communication. Time spent orMPI API calls used for communication.
Collective. Time spent on collective communication.

Early Reduce. Collective communication operations that send data frdipratesses to
one destination process (i.e., n-to-1) may suffer fromiwgitimes if the destination
process enters the operation earlier than its sending eqanrts, that is, before any
data could have been sent. The property refers to the timex$oa result of that
situation.

Late Broadcast. Collective communication operations that send data from source
process to all processes (i.e., 1-to-n) may suffer fromingitimes if destination
processes enter the operation earlier than the sourcegsrdbat is, before any data
could have been sent. The property refers to the time lostesudt of that situation.

Waitat N x N. This property corresponds to the situation of Example 3.468). Col-
lective communication operations that send data from alcgsses to all processes
(i.e., n-to-n) exhibit an inherent synchronization amofigarticipants, that is, no
process can finish the operation until the last process hagdt The time until all
processes have entered the operation is measured and wsedote the severity.

Point to Point. Time spent on point-to-point communication.

Late Receiver. This property corresponds to the situation of Example 3.2€f). A
send operation is blocked until the corresponding receparation is called. This
can happen for several reasons. Eitherni®e implementation is working in syn-
chronous mode by default or the size of the message to be)smdds the available
MPI-internal buffer space and the operation is blocked ungildata is transferred to
the receiver.

Messages in Wrong Order (Late Receiver). A Late Receivesituation may be the result
of messages that are sentin the wrong order. If a process segbages to processes
that are not ready to receive them, the sendepPsinternal buffer may overflow so
that from then on the process needs to send in synchronous oasing date
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Receivessituation. The detection of messages that have been sém wrong order
is discussed in Example 3.3 (p. 67).

Late Sender. This property corresponds to the situation of Example 3.5§). It refers
to the time wasted when a call to a blocking receive operatog, MPI_Recv or
MPI_Wait) is posted before the corresponding send operation hasshedad.

Messages in Wrong Order (Late Sender). A Late Sendesituation may be the result of
messages that are received in the wrong order. If a procgesixmessages from
one or more processes in a certain order while these pracassesending them
in a different order, the receiver may need to wait longerdanessage because
this message may be sent later while messages sent eaglieraaly to be received.
The detection of messages that have been sent in the wroeg isrdiscussed in
Example 3.3 (p. 67).

IO (MPI). Time spent ormPI file 10.
Synchronization (MPI). Time spent omPI barrier synchronization.

Wait at Barrier (MPI)  This property is similar to the situation of Example 3.4 (8).6
It covers the time spent on waiting in front of a#P1 barrier. The time until all
processes have entered the barrier is measured and usedpatedhe severity.

OpenMP. Time spent on the Ope&fp run-time system.
Flush (OpenMP). Time spent on flush directives.
Fork (OpenMP). Time spent by the master thread on team creation.

Synchronization (OpenMP). Time spent on Opewnp barrier or lock synchronization.
Lock synchronization may be accomplished using either Adfls@r critical sec-
tions.

Barrier (OpenMP). The time spent on implicit (compiler-generated) or expl{ciser-
specified) Opemp barrier synchronization. As already mentioned, implictriers
are treated similar to explicit ones. The instrumentaticotedure replaces an im-
plicit barrier with an explicit barrier enclosed by the gabconstruct. This is done
by adding a nowait clause and a barrier directive as the tastreent of the paral-
lel construct. In cases where the implicit barrier cannotdsaoved (i.e., parallel
region), the explicit barrier is executed in front of the i barrier, which will
be negligible because the team will already be synchronigezh reaching it. The
synthetic explicit barrier appears in the display as a spp@aplicit barrier construct.

Explicit (OpenMP). Time spent on explicit Opewp barriers.

Implicit (OpenMP). Time spent on implicit Opewp barriers.
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Wait at Barrier (Explicit).  This property corresponds to the situation of Example 3.5
(p. 69). It covers the time spent on waiting in front of an éxpuser-specified)
Opemvp barrier. The time until all processes have entered thedragimeasured
and used to compute the severity.

Wait at Barrier (Implicit).  This property corresponds to the situation of Example 3.5 (p
69). It covers the time spent on waiting in front of an impli@ompiler-generated)
Opemvp barrier. The time until all processes have entered thedragimeasured
and used to compute the severity.

Lock Competition (OpenMP). This property corresponds to the situation of Example
3.6 (p. 70). It refers to the time a thread spent on waitingaftwck that had been
previously acquired by another thread.

API (OpenMP). Lock competition caused by Oper API calls.
Critical (OpenMP). Lock competition caused by critical sections.

Idle Threads. Idle times caused by sequential execution before or aft@psmwPp paral-
lel region. It corresponds to the intervals covered by thlethgray bars in Figure 4.3.

4.4.7 Extensibility Mechanism

EXPERT provides a large set of built-in performance propertiesecog the most frequent
inefficiency situations. But sometimes the user may wishotws@er application-specific
metrics, such as iterations or updates per second. In thés tfze user can simply write an-
other pattern class that implements a custom-made agphesgpecific performance prop-
erty. Of course, the new property must adhere to the comnterface defined by base
classPat t er n. After that, the user can place it into the module where thergpatterns
are located.

At startup time EXPERT dynamically queries the module’s name space and looksghrou
all of the module’s pattern classes including the newlyritezeones, from which it is now
able to build instances. The new patterns are integratedtia graphical user interface
and can be used like the predefined ones. Note that this misahaglies on the Python
module concept, which allows a module’s namespace to belssgat run time.

However, as already mentioned, the placement of new piiepért the hierarchy or the
modification of existing ones must satisfy the constrairdaifSection 4.4.3. That means,
the severity of a property must always be a subset of theisgwéits parent property (4.7)
and the severity of sibling properties must always be naerapping (4.13), which may
complicate the design of new properties in that new progedre limited in their potential
coverage ot Pu-reservation time.
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4.5 Visualization of Performance Behavior

Pancake [63] regards human factors as the reasons for titediacceptance of perfor-
mance tools among program developers. Often tools are tbhdedrn” and “too complex

to use”. Influenced by the way developers approach the tagkrddrmance analysis, she
identifies key requirements for performance tools that khba met to increase their us-
ability: support for exploring the total performance spaagport for comparing different
aspects of program behavior, and support for navigatirgutiin complex source-code hi-
erarchies. The design goal of tB&PERT presenter was the accommodation of all these
three features in a simple but powerful display based onfaumimulti-dimensional hier-
archical organization and ranking of different items ustogprs.

The user can interactively access each of the hierarchiestitting a dimension of the
performance space usivgeighted trees A weighted tree is a tree browser that labels
each node with a weighEXPERT uses the severity amount associated with that node as a
weight. To simplify comparison of different weights, theigle is written as a percentage

of the cpu-reservation time. The weight that is actually displayefded®ls on the state

of the node, that is, whether it is expanded or collapsed. Widight of a collapsed node
represents the whole subtree associated with that nodeeasthe weight of an expanded
node represents only the fraction that is not covered byessehdants because the weights
of its descendants are now displayed separately. This slfbevanalysis of performance
behavior on different levels of granularity.

For example, the call tree may have a natgnwith two childrenfooandbar (Figure 4.9).
In the collapsed state, this node is labeled with the weigptasenting the time spent in
the whole program. In the expanded state it displays onlyrdetion that is spent neither
in foonor inbar.

100 main

Figure 4.9: Weighted tree in collapsed and expanded state.

The weight is displayed simultaneously using both a nuraévialue as well as a colored
icon. The color is taken from a spectrum ranging from bluestbnepresenting the whole
range of possible weights (i.e., 0 - 100 percent). To avoidiamecessary distraction,
insignificant values below a threshold @b percent are displayed in gray. Colors enable
the easy identification of nodes of interest even in a laege iwhereas the numerical values
enable the precise comparison of individual weights.

The complete performance-space display is depicted inr€&igw8 (p. 119). The left tree
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shows the performance-property hierarchy, the middledhesvs the call-path hierarchy,
and the right tree shows the location hierarchy. The weytrees of the different dimen-

sions are interconnected so that the user can display thteszalvith respect to a particular

performance property and the location tree with respecp@rticular node in the call tree.

After selecting a property and a call path, the call treersefe the selected property, and
the location tree refers to both the selected property aaddtected call path. Note that
references to selected items also take into account thee(s&t collapsed or expanded) of
these items.

Table 4.1 summarizes the severity shown by a node in the rpeafice-space display. A
noded of one of the three trees either represents a performanpernyd < B, a call path

n € N, or alocation € L. The state of a node is given by a functiemte(d) € {e, i},
which indicates whether a node is collapsé&dar expandedd). Note that a collapsed
node corresponds to inclusive semantigs(id an expanded node corresponds to exclusive
semanticsd). In addition,b,.; denotes the selected property angd the selected call path.

Table 4.1: Severity amounts shown in tree displays.

Displayed Node Severity

be B |sev €O (b root(N), root(L)]
neN |S/e\v(state(bsel),state(n),z) (bsela n, T‘OOt([A/)|
ZG [A/ |S/e\v(state(bsel),state(nsel),state(l))(bsel Neel Z)|

In the default mode, the display represents the severitym@ntage of the totalPu-
reservation time. This mode is called thbsolute modé&ecause all percentages refer to
the same yardstick. However, applications that exhibitgel@all tree and many locations
may suffer from very small values in the call tree and, inipatar, in the location tree,
which may limit the display’s scalability. For this reasdhe presenter offers lative
view mode In this relative view mode, a percentage shown in a treeyswefers to the
selection in the left neighbor tree. For example, the dispidigure 5.3 (p. 119) is in the
absolute mode. Each value is a percentage of the ¢etalreservation time. In contrast,
the display in Figure 5.1 (p. 116) is in the relative view motlbe 12.1 percent shown for
process 0 in the location tree represeritd percent of2.4 percent (selected call path) of
2.0 percent (selected property) of toeu-reservation time.

Weighted trees provide a uniform and very intuitive displayeach of the analyzed di-
mensions. Once the user is familiar with this kind of displays possible to navigate
across the performance space in a scalable but still aecuray along all its intercon-
nected dimensions. First, the presenter allows exploratfahe full performance space
by showing the results of a multidimensional analysis in dtichtnensional fashion using
three interconnected tree browsers. Second, instead @ising the user with differently
styled views for different metrics, all performance prdperare uniformly accommodated
in the same display and thus provide the ability to easily para the effects of different
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kinds of performance behavior. In addition, since the usdy needs to get accustomed
to one way of presentation, the necessary learning effogtsmall. Third, the ability to
investigate the performance behavior of individual noaethe call tree (i.e., call paths)
either including or excluding their descendants allowsathalysis of complex source-code
hierarchies along the functional dependences of theirehésn

4.6 Limitations

Despite its strengths, the approach taken in this thesibxisome limitations that re-
sult both from general limitations of event tracing on theedrand and from particular
properties of the trace-analysis method proposed heresoottier hand.

e The event-trace size, which may easily reach several mdliaf events or several
hundreds of megabytes when dumped to a file, constituteseaesebstacle to a
ubiquitous application of all trace-based performancaheasis techniques. The dif-
ficulties of handling large traces result from their locaffetmemory requirements
during generation, which may, in addition to competing foe target application’s
memory, cause significant perturbation when the buffererastare written to a file
as a result of buffer overflow. Also, global trace-file sizesyrfimit scalability in the
case of massively parallel systems with thousands of psoces

e As a consequence of the enormous trace-file sizes, the aplggess performed
by EXPERT may take several hours to complete. Although a processimg oif sev-
eral hours might be acceptable if it results in substangdiggmance improvements,
to convince the user community a production tool shouldraff@re convenience
also with respect to speed. However, the current Pythonemehtation still of-
fers opportunities for optimization. Section 4.7 preseascepts that are aimed at
optimizing the analysis process in terms of speed and nrante.

e As already mentioned in Section 4.48XPERT does not compute the severity of
a performance property as an interval set. Instead it coespanly the amount by
summing up the amounts of simple intervals. To ensure thecimess of computing
the inclusive and exclusive severity, the severity intlred siblings in the property
hierarchy must be non-overlapping (4.13), which may litmét freedom of extending
that hierarchy at least to some extent.

4.7 Advanced Techniques

This section presents concepts partially dealing with tlegipusly mentioned limitations,
which are too detailed and too specific to be mentioned irasischapter, but still too early
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in design and development to be considered finished.

4.7.1 Selective Tracing

Another option for speeding up the analysis process is theteitacing. The central idea
of selective tracing is to reduce trace-file size and intnudly recording only a selected
subset of the performance space, which implies that thetsmbecan be done along sev-
eral dimensions, such as time, source code, or locatiors sé&kection may be based both
on omitting performance data showing only inconspicuousaki®r or on avoiding repe-
tition by restricting the measurement to a small but stiresentative subset of program
execution. However, both methods require either some fdrdywamic instrumentation
or multiple experiments because neither suspicious pnograrts nor the occurrence of
repetitive behavior are usually known prior to the first meament.

A simple method of identifying performance-relevant paogrparts for the purpose of se-
lective tracing is to generate a profile prior to event trgcifhen, tracing can be restricted
to those program parts that show performance-relevanvimha the profile. However, in
some cases a call-graph—based profile, which can be obtasnegl a call-graph profiler,
such ascATCH [17], might be necessary to also identify the context in \whaccertain
function exhibits inefficient behavior.

Another strategy of dynamically moving from coarse-grdiperformance data with low

space requirements for large portions of program behavitmé-grained performance data
for small suspicious parts of program behavior which hawenbdentified based on the
coarser data, was successfully applied by Miller et al. [3he Paradyn project, although
it is not used there for event tracing. A recent addition t® Baradyn tool [12] was a

call-graph—based search strategy that climbs down theeghh stepwise from callers to
callees. A callee is chosen for instrumentation if the caleeeds a certain threshold with
respect to a certain performance metric.

A third approach motivated by the desire to restrict eveatds to representative subsets
of program execution is presented by Freitag et al. [28].yTiheto exclude periodical
repetitions of iterative patterns by applying a periogtaletection algorithm to the stream
of parallel function identifiers at run time. This seems tg@bamising in particular in view
of the many iterative applications in computational sceenc

However, the approach of compound-event detection basedemt-model enhancement
imposes some consistency constraints on selective tnabés) must be considered when
opting for a selection method. An event trace that startsesdmre in the middle of pro-

gram execution or that does not contain the events of cegtecution phases may, for
example, suffer from incomplete region instances and ngessdhat is, incomplete pairs
of EnterExit and SendReceiveevents. In addition, it may contain only fractions api
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collective-operation or Opesp parallel-construct instances. All this may cause the ab-
stractions defined in Chapter 3 to fail as a result of an indetavent trace. In general,
the necessary completeness constraints may vary depeniditng set of abstractions re-
quired and on the kind of compound events to be detected.

A simple model of selective tracing in the context of modédhamcement would require
the selective trace to start with some form of check-poifdrimation and then continue
with individual events. A check-point could contain the remt call-graph node(s) and
all pending communications. However, writing a check pemwuld require tracking this
information continuously during run time

DeRose and Wolf [17] propose a technique for tracking thegralph at run time with
constant overhead based on binary instrumentation. Thaypgte the static call graph in
advance and for every control flow move a pointer from nodetieras program execution
proceeds. Each call site provides an index into an arrayarfessor nodes so that the next
node to be reached by that call site can be quickly deternbasdd on that index.

A method of dealing with pending communications, that isag¥eg MPI point-to-point
messages and collective operations, would be their avoelay starting the selective trace
only after finishing a (synchronizing) collective operatinvolving all processes since in
most applications point-to-point communication is usgalbt interleaved with collective
communication. This approach is especially well suitedstdective traces covering single
iterations of large loops because in many applicationseaatibn is finished with a global
reduction operation or a barrier.

4.7.2 Publish and Subscribe

The current design afXxPERTimplements performance properties as pattern classel. Eac
class is separately responsible for both compound-evstdntiation and constraint ver-
ification. A sharing of functionality is restricted to exglag the inheritance hierarchy,
which is not identical to the specialization hierarchy atidis, is of limited benefit for
this purpose. This low level of cooperation among diffeneaitern classes causes certain
aspects of similar properties to be both specified and cosdgutice.

Another more effective way of sharing functionality amonfjedent properties would be
to exploit the increasing specialization of compound evebng a path in the property
hierarchy. For example, the propeiMessage in Wrong Ordavperates orLate Sender

compound-event instances. Currently, the two propertiesamputed independently.

So instead of providing a call-back method only for prinetevents a property (i.e., pattern
object) could also “subscribe” to compound events that published” by other properties
residing on a higher level in the hierarchy. The subscrilbetsrn could add some fea-
tures to the compound event and republish it as a more sedalersion of the one they
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received as a subscriber. As long as a property may only sbbgo compound events
published by more general properties it is ensured thaethsx no cyclic dependences.
The compound events to be published could be specified aseslaath specific access
methods.

4.7.3 Generic Visualization

The strength of the visualization technique appliedeE)PERT stems from its uniform
treatment of all performance properties, which allows rtlgicommodation in a single
integrated view. This not only simplifies the tool usage dabaives an opportunity to
correlate different aspects of performance behavior.

Besides improvements in the contextePERT, such as adding a source-code display to
highlight code regions or integrating it with an event-gdrowser to show representative
compound-event instances, the underlying idea of presgpgrformance data in a multi-
dimensional property-oriented performance space offerspportunity of a much broader
coverage of different performance data.

Since the representation of performance properties inujuitheir severity is independent
of their semantics, a similar visualization could be usedafdifferent performance tool
relying on different performance metrics. For example, @fifar, such ascAaTcH [17],
might collect cache events per call-graph node and locat®ince cash events can be
organized in a hierarchy, for example, based on access &jlpesad, or write) or level in

a multilevel cache, a multidimensional representatiomwhe number of events indicated
by color would be appropriate here as well. Even differematisions, such as resource
hierarchies as used in Paradyn [55], can conceivably vidiin that way.

A reasonable conclusion drawn from these considerationsldvbe to establish the
property-oriented performance space as an independemtaadel that can serve three
different goals:

1. High-level data model of performance behavior
2. Portable data format
3. Generic presentation component

First, as a data model it can help to define relationships grddferent performance prop-
erties, such as specialization and generalization, dieakhips among different locations,
such asviPl process topologies. Note that it need not be restrictedei@rchical organi-
zations. Second, as a portable data format it can be usedreolsith static performance
metadata describing these relationships and dynamicrpeaftce data representing a par-
ticular experiment in the context of these relationshipsview of a frequently occurring
hierarchical organization of performance entities, suaat format could be designed
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as anxmL [74] instance. Third, files in that data format can serve asitifior a generic
visualization component that is dynamically adapted basetihe file’s metadata.

4.8 Summary

The EXPERT performance tool analyzes the performance behavierof Opemvp, or hy-
brid applications by transforming event traces into a tlteeensional property-oriented
performance space. The key idea behind the property-edgmrformance space is the
uniform treatment of all performance properties, allowihgir convenient correlation
along multiple dimensions using only a single integrateswi

A thread-safe multi-level instrumentation captures evegltated to ordinary user functions
as well as events specifically relatedvpl and OpempP on the source-code, compiler, and
linker level and merges them into a single event trace wibhall time stamps.

The analysis process tries to prove the presence of perfmenproperties in the target
application by looking for the existence of compound evantbe event trace. Compound
events are specified in terms of an enhanced event model, mh Wie actual analysis
process takes place.

After analysis has been completed, all performance priggeréturn their severity ma-
trix representing their plane of the performance space.n;Ttiee matrices of individual
properties are combined into a three-dimensional datatsirel spawning the whole per-
formance space. After adding hierarchical locations toddia structure, it is displayed
using weighted trees. Each tree represents a dimensiome g@iettiormance space and al-
lows a scalable inspection of that dimension by showing évesty of a node in the tree
either including all its children in a collapsed state orleging all its children in an ex-
panded state. In addition to a numeric value, the severiglss indicated by color to
highlight extremes even in the case of large trees.
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Chapter 5

Examples

The EXPERT performance-analysis environment has been tested foradeeal-world ap-
plications. The chapter demonstrates that the performpnuglems addressed by the
present approach are of practical relevance and that theypeaconveniently localized
using theEXPERT presentation component. The test cases comprisetv@applications,
TRACE andcx3D, and two hybrid applicationEMO andsSwWEERD. The thesis considers
one event trace per application.

All the experiments were conducted @aampano [27], a parallel computer with eight
SMP nodes, each having four Intel Pentium Ill Xeon (550 MHBus. CPuU reservation

was done such that oreru per thread or single-threaded process was available to each
application.

Table 5.1: Trace-file size and overhead.

TRACE Cx3D REMO SWEERD
CPUS 16 8 16 16
Size (B) 310 34 170 72
Execution time (sec) 58.9 139.8 37.2 16.5
Overhead (%) 4.2 0.1 9.7 6.0
Analysis time (h:m) 12:57 1:25 9:48 3:22

Table 5.1 summarizes trace-file size and overhead. The dwstcontains the program
name, the second row shows the numbezrifis used, the third row lists the trace-file size,
and the fourth row gives the execution time. To estimate tihetime overhead introduced
by the instrumentation, the minimum execution time of aeseaf ten uninstrumented runs
was compared to the minimum execution time of a series ofristiimented runs. The
result is listed in the fifth row. Finally, the last row showsetduration of the analysis
process carried out on the test platform.

115
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The large trace-files sizes obtained for only short exenuiioes expose a limitation of the
current approach. Selective tracing techniques, as disdua Section 4.7.1, might help to
reduce temporal event density while preserving releveotmmation. The inconveniently
long analysis run times are not only a result of large trdeesfzes, but also a consequence
of the prototype’s early design stage. One opportunity fiimoization is, for example, an
improved information exchange among different perforneapioperties during analysis,
as outlined in Section 4.7.2. In addition, the re-impleragoh in a fast programming
language, such as C++, might also contribute to better sesetts. The overhead numbers
presented in the table are satisfactory, only the instraatiem overhead oREMO reaches
nearly ten percent. However, since the performance proldentified inREMO is large in
relation to the overall execution time, the numbers preskhere concerning this problem
are still useful (Section 5.3).

5.1 TRACE

TRACE [26] simulates the subsurface water flow in variably saatdgtorous media. The
parallelization is based on spatial decomposition and allptized cG algorithm. The
application was executed using fosmp nodes with four processes per node (4 processes
X 4 processesMPI communication withirsMP nodes was done via shared memory.

Using the performance-property view (Figure 5.1, leftisieasy to see that most of the

i
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Figure 5.1: Display of performance behaviorBRPERT for TRACE in the relative view

mode.
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time used for communication routines was spent on waiting uthe situationd.ate
SenderandWait at N x N, which are described in Example 3.1 (p. 65) and 3.4 (p. 68).

Using the call-tree view (Figure 5.1, middle), one can qglyidkcate two call paths that
are major sources of the previously identified performamoblpms. The call path mainly
responsible for the property/ait at N x N is shown in the vertical middle of the call tree.
The presenter display was switched to the relative view mth@ is, whereas the values
and colors on the left are percentages of the total reservation time, the percentages
in the middle are fractions of the selection (node with frdrfabel) on the left, and the
percentages on the right are fractions of the selectionamriudle. For example, th&8
percent shown for the selected call path in the middie8spercent of2.4 percent of the
total cpu reservation time.

The results of the analysis are listed in Table 5.2. Whilettipesection of the table lists
the two call paths, the bottom section contains the numegsalts obtained for the whole
program and these two call paths. The values in the bottotroseaepresent percentages
of the totalcpu-reservation time. The first column refers to the whole paogrwhereas
the second and third columns refer to the call paths listede the table. The first row
corresponds to the time spenti®l communication statements. For the two call paths this
is just the time needed for completion of the speaifia calls at their end. The second and
third row correspond to the waiting times caused by\Wait at N x N andLate Sender
situations.

The location view (Figure 5.1, right) shows the distributad idle times introduced bwait

at N x N during execution of the call path selected in the middledfdégure 5.1, which is
another call path responsible for that property. Obviguhbly idle times expose an uneven
but still symmetric distribution across the different peeses. The “inner” processes of
eachsmMpP node exhibit significantly less waiting time than the “otitenes. Figure 5.2
shows avAMPIR [3] time-line diagram offRACE when executing this call path. The time

Table 5.2: Performance problems found TRACE in percentage of the totatPu-
reservation time.

Call Paths

(a) trace — cgiteration — parallelcg — parallelfemltiply — exchangedata —
exchangebuf ferswf — nrecv — MPI _Recv

(b) trace — cgiteration — parallelcg — parallel dotproduct — gl obal sumrl —
MPI Al l reduce

Performance Property Whole Program €) (b)
Communication 14.3 7.8 3.0
Late Sender 7.3 5.8

Wait at N x N 2.4 2.2
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line presents a noticeabiait at N x N instance. The distribution of the waiting times in
MPI_Allreduceshown in the time line bears a clear resemblance to thelulisisn shown in
the EXPERT result display (Figure 5.1, right) in that every second péjprocesses suffers
from significant waiting times.

VYAMPIR - Timeline
trace,vpt (51,517 = - 51,538 s = 21,469 ns)

51,53 = 51,535 =

Process 0 186 1 trace 128 L
Proces= 1 tr‘lac:e 125154 T3
Pracess 2 da 128 194

Pracess 3 188 troce 128 194

Pracess 4 188 trace 128 194

Process b r‘lac:e 123 134

Pracess a1 128 194

Pracess 7 186 trace 128 194

Process 2 tr'éce 128 194

Process 8 tr‘laceiQS 194

Process 10

Process 11 ¢ 1281594

Pracess 12 128 123134

Process 13 tr‘lac:3128 194

Process 14 ! !

Process 15 186 BT Al lrediss 12?3 128194
Figure 5.2:vAMPIR time-line diagram offRACE.

cx3D is anMPI application used to simulat&zochralskicrystal growth [54], a method
applied in the silicon-wafer production. The simulatiorvers the convection processes
occurring in a rotating cylindrical crucible filled with ligd melt. The convection, which
strongly influences the chemical and physical propertiethefgrowing crystal, is de-
scribed by a system of partial differential equations. Theible is modeled as a three-
dimensional cubic mesh with its round shape expressed Hicdyarder conditions. The
mesh is distributed across the available processes usimg-ditmensional spatial decom-
position. The application was executed on tamP nodes with four processes per node.
MPI communication withirsmpP nodes was done via shared memory.

Most of the execution time is spent in a routine calleelo, which is responsible for
calculating the new velocity vectors. Communication isuiegd when the computation
involves mesh cells from the border of each processor's@uiath. The execution con-
figuration ofcx3D is determined by the number of processes that are assigreathoof
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EXPERT: cx3d.eap
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Figure 5.3: Display of performance behavioreRPERT for cx3D in the absolute view
mode.

the two decomposed dimensions. The experiment presentedias conducted with a
decomposition configuration 6fx 1 processes.

The results in Table 5.3 show that a significant amount of trarunication time was
introduced byt ate SendeandWait at Nx N. Using the call-tree view (Figure 5.3, middle),
it is easy to identify two call paths mainly responsible foese performance properties.
Both call paths are executed as partsyato. They are listed in the top section of the
table.

Using the location view (Figure 5.3, right), one can eagilestigate the distribution of
the identified performance problems across the processkesrgparticular, look for sim-

Table 5.3: Performance problems foundix3D in percentage of the totalPu-reservation
time.

Call Paths

(@) velo — crecvxs — Ml Recv

(b) velo — MPI _Allreduce

Performance Property Whole Program (a) (b)
Communication 18.4 7.1 6.9
Late Sender 5.8 4.6

Wait at N x N 7.5 6.6
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ilarities and correlations among the distributions ofeliént properties. Figure 5.3 shows
the distribution of the propertlyate Sendeacross the processes. It is obvious that most of
the time associated with this property is caused by processl[.

The bar chart in Figure 5.4 compares the distributiorLafe Sendein routine VELO
to the distribution of other properties also available ia HXPERT presenter.Execution
(exclusive)is the execution time ofELO that was not spent omPI and, thus, roughly
corresponds to the time spent solely on computati@ommunications the time spent
on MPI communication statements. SincevBLO call path (a) is the only source bate
Sendemand call path (b) is the only source\iit at Nx N, both properties in the bar chart
refer toveLO as a whole as well as to the two call paths alone.

Apparently, the computation is unevenly distributed astb® different processes, a situ-
ation that is commonly referred to as load imbalance. Moggav seems that there is a
correlation between this load imbalance and the times spebate SendeandWait at N

x N. Every time the computation time is low, the times spent ah bate SendeandWait

at N x N are high. Notice that the difference betwggommunicatiorand the sum ofate
SendelandWait at N x N is always very small compared to the computation time.

I Execution (exclusive)
B Communication
OLate Sender

O Wait at NxN

CPU-reservation time (%)
o = N w N [4)] (2] ~ e<] o

0 1 2 3 4 5 6 7
Processes

Figure 5.4: Distribution of performance properties/i|LO across the processes.

A VAMPIR time-line diagram otx3b when executinggeLoO is shown in Figure 5.5. The
middle of the time line exhibits a noticealllate Sendeinstance. Process 7 tries to receive

a message from process 6 usMBl_Recy, but the message is sent long after process 7 has
entered the receive operation. Some other but smallemiossafollow shortly after this
one. Finally, on the right part of the time line one can recog@aWait at N x N instance
across all processes. Note that the workload distributtonss all processes for the section
of the time line shown here corresponds to the observatiauerbyEXPERT in that the
fraction process 7 spent on computation is small comparede@ther processes. This
seems to be the reason that tiel operations are entered earlier by process 7 and, thus,
the reason for the inefficient behavior.
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Figure 5.5:vAMPIR time-line diagram of:x3D.

5.3 REMO

REMO [18] is a weather forecast application of therz (Deutsches Klima Rechenzen-
trum). It implements a hydrostatic limited area model, vialhis based on th®eutsch-
land/Europaweather forecast model of the German Meteorological Sesv{Deutscher
Wetterdienstwb)). The thesis considers an early experimentl/Opermp version of
the production code. The application was executed on fodesavith one process per
node and four threads per process (4 processéshreads).

Figure 5.6 shows the result display REMO in the absolute mode, that is, all values and
colors represent percentages of the toral-reservation time. The property view indicates
that one half of the totatPu-reservation time is idle time (i.ddle Thread$¥resulting from
OpemP sequential execution outside of parallel regions. AltHodgring this period the

idle threads actually do not execute any code, the time igoedhpnto the call paths that
have been executed by the master thread during this timet iTha say, for analysis
and presentation purposSEgPERT assumes that outside parallel regions the slave threads
“execute” the same code as their master thread. This methcallgpath mapping helps

to identify parts of the call tree that might be optimized nder to reduce the amount of
sequential execution.

In the case oREMO, theEXPERT call-tree view (Figure 5.6, middle) allows the easy iden-
tification of two call paths as major sources of idle timese Tdcation view (Figure 5.6,
right) illustrates that this property only applies to sldkieeads. The analysis results are
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Figure 5.6: Display of performance behaviorBRPERT for REMO in the absolute view
mode.

listed in Table 5.4. The values shown in the bottom sectipnesent the severity of the
propertyldle Threadsmeasured for the whole program and the two call paths. The val
ues are percentages of the tat&lu-reservation time lost as a result of this performance
property. The two call paths are listed in the top section.

Table 5.4: Performance problems foundkimo in percentage of the totalPu-reservation
time.

Call Paths

(8 remo — renmorg — ecdorg — progec4 — phyec

(b) remo — renmorg — ecdorg — progec4 — progexp

Performance Property Whole Program (a) (b)

Idle Threads 51.6 11.4 9.9
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5.4 SWEEP3D

The benchmark cod®wEEFD [4] represents the core of a reedCl application. It solves

a 1-group time-independent discrete ordinates (SnLCartesianXyz) geometry neutron
transport problem. The thesis considers an early expetah@ri/Opemmp version of the
original MmPI version. WhilemPI is responsible for parallelism by domain decomposition,
Opemvp is responsible for parallelism by multitasking.

The application was executed on four nodes with one processagqale and four threads
per process (4 processes4 threads). The performance behaviois®iEERD exhibits a
weak point of hybrid programming, that is, a performanceéfmm resulting from the com-
bination ofMPI and OpempP. MPI calls made outside a parallel region prolong sequential
execution and prevent availabteus from being used by multiple threads. The results
are shown in Table 5.5. The call path (a) shown in the tablegpansible for most of the
losses occurring due to the propeltje Threads However, at the same time this call path
exhibits a significant loss due to the propdrgte SenderNote thatLate Sendeadds the
times of the master threads, wherddlie® Threadsadds the times of the slave threads (3
slaves per master). Taking this into account, redutiaiig Sendeby one percent would
speed up the application by four percent. Obviously, onsaedor theLate Sendeprob-
lem at call path (@) is receiving messages in the reversersgodier Messages in Wrong
Order).

Moreover, a significant amount of time is spent on the implice., compiler-generated)
Opemvp barrier at the end of call path (b). Expanding the node of tlopgrty Implicit

Barrier reveals that most of that time is lost due to the prop@vait at Barrier (see also
Example 3.5, p. 69). The property deals with the threads eaetreaching an implicit

Table 5.5: Performance problems foundSwEeEeERD in percentage of the totatPu-
reservation time.

Call Paths

(&) seep3d — inner_auto — inner — sweep — recv.real — Ml _Recv

(b) driver — inner_auto — inner/sweep — !$onp parallel — !$omp do —

I'$onp ibarrier
Performance Property Whole Program €)) (b)
Idle Threads 375 17.5
Communication 6.5 5.8
Late Sender 3.2 3.2
Messages in Wrong Order 0.9 0.9
Implicit Barrier (OpempP) 4.3 3.3

Wait at Barrier (OperP, implicit) 2.8 2.6
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Figure 5.7: Display of performance behaviolBRPERT for SWEERD in the relative view
mode.

barrier at different points in time so that threads arrivéiagly have to wait for those which
arrive later. The location view in Figure 5.7 shows an unedistribution of these waiting
times across the different threads. The display is in thativel view mode. Therefore,
values and colors in the middle and left tree are scaled w#pect to the selection in the
right and middle tree, respectively.

The scheduling strategy applied by the enclosing paratidbdp was not specified in the
source code. In this case, the compiler used for this exgertirstatically assigns a con-
tiguous chunk of work (i.e., a contiguous section of the laagex range) to each thread.
If the loop-index range is not divisible by the number of tds or if the different chunks
represent a different work load for another reason, theattgdinish the loop at different
points in time. To demonstratexPERTS capabilities in highlighting the effects of differ-
ent scheduling strategies on the distribution of waitimges across different threads, the
scheduling was changed to dynamic scheduling with a chum&kdfione. This causes the
program to dynamically assign one loop-index value to elaredd every time a thread asks
for new work. Figure 5.8 shows a result display 8WeeMD with dynamic scheduling
instead of static scheduling. The waiting time is now monéaumly distributed compared
to the version with static scheduling.
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Figure 5.8: Display of performance behavioErRPERT for SWEERD in the relative view
mode. The figure highlights the distribution of idle timesfiant of the implicit barrier
when applying dynamic loop scheduling.
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Chapter 6

Related Work

The approach presented here is not the first work on autopatiormance analysis. Re-
lated approaches - even if they did not serve as inspiratiothé present approach - either
offer a different solution or emphasize a different viewlwd problem.

Miller et al. [55, 72] developed automatic on-line performa analysis based on run-time
instrumentation in the well-known Paradyn project. TheaBgn search process follows
the W3 Search Mode(why, where, when)\which describes performance behavior along
the dimensions: performance problem, program resouree fecus), and time. Similar to
EXPERT, the first two dimensions are organized in a specializatieranchy. Performance
problems are expressed in terms of a threshold and a metmoetAc usually refers to a
counter and is represented either as a percentage ¢el\gtime or blocking time), as a
rate (e.g., operations per second), or as a plain value (imber of active processors).
Program resources include both hardware resources, suptoesssor nodes or disks,
and software resources, such as procedures, message Ishantarrier instances. The
time dimension tries to divide the program execution intag®#s with certain performance
characteristics. A performance-problem hypothesis iandgd as proven if the target ap-
plication exceeds the threshold associated with a metria iertain amount of time. The
search process starts at the top level ofwiny andwhereaxis and performs a successive
refinement both in terms of problem type and focus based oathgpes that have already
been proved. The main accomplishmentgPERT in contrast to Paradyn is the descrip-
tion of performance problems in terms of complex event pastenstead of counter-based
metrics. Also, the uniform mapping of performance behasito execution-time interval
sets in conjunction with a formal characterization of spkration among performance
problems allows the precise correlation of different bedwaw a single integrated view.

The Autopilot [66] software infrastructure targets reaté¢ adaptive control of resource
interactions in parallel and distributed systems. Autambehavioral classification of
resource-request patterns based on data captured byulisttiperformance sensors and
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user-written assertions precedes a fuzzy decision proeedinich relies on actuators to
dynamically carry out changes in the current resource-gemant policy. Whereas this
thesis’s approach mainly concentrates on communicatidrsgnchronization, Autopilot
is useful, in particular, to control the performance of fiatdile 10.

Gerndt and Krumme [30] developed a rule-based approachaonatic performance anal-
ysis of programs on shared-virtual-memory environmenitsh sssvm Fortran [8]. The
analysis process is specified as a rule base consisting némeint rules and proof rules.
Refinement rules consist of a coarse hypothesis and mors@itegotheses to be checked
after the coarse hypothesis has been proved. Proof rulégsicdhe declaration of perfor-
mance information required to prove a hypothesis and paéelcthat represent the hy-
pothesis’s semantics. The approach of Gerndt and Krummecaths a clear separation
between the analysis process as represented by refineneshand knowledge about po-
tential performance problems as represented by the préed.riThe rationale behind the
stepwise analysis process is to control the demand for ferdopnance data by evaluating
predicates over coarser data and thus to reduce the totaltimiodata necessary to assess
an application’s performance.

Finnesse [59] is a prototype environment designed by Mykbest al. to support in-
cremental parallelization of Fortran 77 programs for sharemory architectures. The
parallelization process is guided by an overhead-oriemteipretation of performance
loss relative to the performance of a reference (serial)J@mpntation. Automatic static
analysis to calculate dependence information precedesutoenatic collection and clas-
sification of empirical overhead data by conducting sevexgleriments. Depending on
the results, Finesse may recommend code transformatidmseneffects can be assessed
using a version-management mechanism.

Espinosa [19] implemented an automatic trace-analysiskappPA-pPI for evaluating the
performance behavior 0PI andPvM message-passing programs. Here, behavior classi-
fication is carried out in two steps. First, a list of idle tisrie generated from the raw trace
file using a simple metric. Then, based on this list, a reeargiference process contin-
uously deduces new facts on an increasing level of abstrackinally, KAPPA-PI builds
suggestions of possible improvements from the facts ajrpaaved on the one hand and
from the results of source-code analysis on the other hand.

Vetter [73] performs automatic performance analysisief point-to-point communication
based on machine-learning techniques. He traces individaasage-passing operations
and then classifies each individual communication evengusidecision tree. The decision
tree has been previously trained by microbenchmarks thabdstrate both efficient as
well as inefficient performance behavior. The ability to pid® a special target system’s
configuration helps to increases the technique’s predaicuracy. In contrast to this
approachgXPERT draws conclusions from the temporal relationships of irtlial events

in a platform-independent way, which does not require aaiypitng prior to analysis.
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Helm and Malony propose the design of a novel performanagrdisis systerrROIROT
[36] based on heuristic classification, which means solpiraiplems by matching them to
previously stored solutions. The system consists of a proldolver and an environment
interface. The latter tries to overcome the poor combimadioautomation and adaptabil-
ity found in traditional approaches by separating diagnothods from the software that
supports those methods. The problem solver selects andsaut performance-diagnosis
actions. This process is supported by a knowledge baserhatps both a method cata-
log and control knowledge. The method catalog is a libragyesformance diagnosis tech-
niques, such as rules of hypotheses refinement, whereasnh®lcknowledge specifies
the general policy of the analysis process. However, ragsearch is moving away from
matching problems towards matching of performance modigtsperformance data.

A novel approach to the formalization of performance prapsrand the associated
performance-related data is theART Specification Language\éL) [22], which was de-
veloped by the\PART working group orAutomatic Performance Analysis: Resources and
Tools AsL provides a formal notation for defining performance prapsrtelated to dif-
ferent programming models. It allows performance-relatath items to be referenced by
means of an object-oriented data model. InAlse terminology, a performance property
represents one aspect of performance behavior. To teshertsich a property is presentin
an application, an associated condition must be evaluasebbon the current performance
data. The notion of a performance property strongly infleelnthe work orexPERT and
motivated the notion of a property-oriented performanaeep However, since the initial
AsL data model mainly concentrated on profiling data (i.e., samyrmformation) and did
not take advantage of the more detailed information coathin event traces, the work on
compound events done in this thesis stimulated the tredtofdérace data within thesL
framework. Appropriate extensions have been proposeddtid®e3.9 and are now part of
the revisedAsL specification [21].

Stimulated byasL, JavasL [23] was designed by Fahringer et al. to specify performance
properties based on the Java programming language. BXRERT, JavasL represents
performance properties as abstract classes that can benmapted to provide an extensible
set of performance properties to be used in a real tool. Véls&nePERT uses Python to
provide a uniform interface to performance propertiesaday exploits mechanisms of
the Java language, such as polymorphism, abstract claasgseflection. As opposed
to EXPERT, which concentrates on compound-event analysis and ddfitersproperty
relationships based on a subset condition referring taie $pent on a specific behavior,
JavasL emphasizes the definition of performance properties baseaisting properties.
Key ideas are the definition of abstract classes to isolatenwanalities of the property
implementation and the definition of metaproperties thaede on a whole set of existing
performance properties. Common to both approaches is tegrated treatment ofiPI,
Opemvp, and hybrid programming.

LAllen Malony: personal communication
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An alternative approach to describing complex event padteras devised by Bates [5].

The proposed Event Definition Languag®() focuses on specifying incorrect behavior
of distributed systems. It allows compound events to be ddfin a declarative manner

based on extended regular expressions, where primitivet®wee clustered to higher-

level events using certain formation operators. Relatierpressions over the attributes
of the constituent events place additional constraints alid \event sequences obtained
from the regular expression. Abstraction mechanisms dlf@we-use of already defined
compound events to form custom hierarchies of events. Hexygvoblems arise when

trying to describe compound events that are associatedswitie kind of state, such as
those representing performance problemgm and Opemp applications.

Kranzimuller [47] applies event-graph analysis in oradedétect parallel-programming er-
rors. An event graph is a finite set of events connected by pdregul-before relation [48].
The happened-before relation is derived from either theiesetipl order of events gener-
ated by the same process or message communications amsrgrdiprocesses. Com-
plex erroneous behavior is expressed in terms of eventrpattkat are specified using a
graphical tool named PatternTool [33]. Abstraction mecras are based on selection
operations, relations, and macronodes. Selection opasatilentify groups of events with
similar characteristics. Relations refer to the relatigsipons of events in the graph and
allow the identification of predecessors and successors ef’ant. Finally, a macronode
is a collection of possibly different event-graph pattetiregt allow arbitrary complex pat-
terns to be constructed for any imaginable algorithm. Asospp to this approach, the
compound-event specification used EXPERT relies on complex relations based on state
information that are suitable for expressing the inefficlehavior of parallel programs on
the level of the underlying programming models.

Much work has been done on the visualization of performamta. dApart from standard
displays of profiles and event traces, such as Apprentidgflgure 2.3, p. 23) angiAM -
PIR [3] (Figure 2.2, p. 18), and call-graph—based profile digplauch as Xprofiler [42]
(Figure 2.4, p. 24), which have all been described in Se@i@nvery sophisticated perfor-
mance data displays tried to approach the problem of hidiolgcomplexity behind simple
but still expressive presentation techniques. Solutiange from animated displays, such
as those included in ParaGraph [35], to complete virtudltye@anvironments that allow
an immersive investigation of the performance space, sad¥irtue [68]. However, the
emphasis 0EXPERT was not the invention of a new display in a technical sensderAf
all, the use of tree browsers is not revolutionary and evercttoring of nodes in the tree
has been previously applied, for example, in the xIcb [13file browser. HoweveEx-
PERT shows that an intuitive but still insightful perception arformance behavior can be
achieved through uniformity and simplicity both in the logii model of the performance
space as well as in its visual representation, which iszedljust by coupling standard tree
browsers.

The integration of1P1 and OpemP in a single tool has been addressed by other researchers
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as well. Hoeflinger et al. [38] integrated tMamPIR [3] event trace browser with the
GuideView [45] Openip analyzer to build a new toaslGv for MpI/Opemvp applications.
VGV provides a scalable time-line view of an event trace higtiigg sections of mul-
tithreaded program execution. The user can select indavisections and analyze them
using a graphical profile display. AlthougteV is not an automatic tool in terms of auto-
matic behavioral classification, it is listed here for iteeigrated treatment of both program-
ming models. Similarly, the Paraver tool [20] provides &atsualization and quantitative
trace analysis of hybrid applications but lacks supporafttomatic performance-problem
detection.
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Chapter 7

Summary and Conclusions

The structure of current parallel systems complicates fhexformance behavior in a way
that limits the ability of program developers to reliablyegict the performance implica-
tions of their design decisions. Complex interactions agnowltiple layers ranging from

sophisticated processor architectures to elaborated comcation middleware must be
taken into account when “engineering” an application fghhperformance.

In this context, parallel computers wigMp nodes deserve major interest for two reasons.
First, they combine the packaging efficiencies of sharediarg multiprocessors with the
scaling advantages of distributed-memory architecturbs.result is a computer architec-
ture that can scale more cost-effectively in size. Secdmd,dass of parallel computer
architecture captures the two dominant architectures afeshmemory and distributed
memory as subsets. Its hybrid nature is reflected in difteneodes of parallel execu-
tion (i.e., shared-memory multithreading vs. distributedmory message passing). As
a consequence, performance optimization becomes moreuttifind creates a need for
advanced performance tools that are able to address tesal@omputing environments.

This thesis presents a novel approach to analyzing the mpeaftce behavior of parallel
computers withsmp nodes. The approach is based on automatically transforeviegt
traces ofvirpl, OpemviP, or hybrid applications onto a higher abstraction levet dibws
the program developer to identify complex situations offinent behavior and to quantify
the extent to which they affect the overall performance.

The analysis of performance concentrates on a suboptiragkeusf the parallel program-
ming model. Inefficient performance behavior is specifieteirms of compound events
composed of simple events as contained in the trace file. mplgy their specification,

a framework has been developed which offers two differenti&iof abstraction that can
be used to encapsulate complex programming-model-spegtdtoonships. First, state se-
guences describe the execution state of an applicationm@wvilp a convenient means to
identify distributed activities, such as collective ogeminstances, by grouping all events
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involved in such an activity. Second, pointer attributesr@rct single related events and
allow the specification of compound events along a path df suents. The resulting spec-
ifications serve as input for an automatic analysis prodestss responsible for detecting
the corresponding compound events in event traces.

In spite of the fact that the framework restricts itself teets and sets of events as the
only descriptive means, it is able to describe extraordinaomplex performance prob-
lems beyond the capabilities of simple counter-based osgbrievalent in traditional tools.
Moreover, by referring only to platform-independent pndjgs of the programming mod-
els, the approach is portable across multiple platforms.

The event traces are automatically transformed into a septation called the property-
oriented performance space. It is based on the notion offarpgnce property, which
describes a class of performance behavior and constituiedg$t dimension of the three-
dimensional performance space. The second dimension cathgath and describes both
a performance property’s source-code location and theutiwecphase during which it oc-
curs. Finally, the third dimension gives information on thstribution of a performance
property across different processes or threads, whiclvaltmnclusions to be drawn, for
example, concerning the workload balance. A hierarchiggmization of each dimension
enables the representation of performance behavior oeréliff levels of granularity and,
in particular, pays attention to the hierarchical hardwamd software structure of paral-
lel computers withsmp nodes. Each point in the performance space is mapped onto the
corresponding fraction of execution time, allowing thewament correlation of different
behavior along multiple dimensions using only a single view

The EXPERT performance-tool demonstrates the usefulness of the appraken in this
thesis. Its multilayer architecture is based on the sejparaf the performance-property
specifications from the actual analysis process. Everygtgpman be accessed through
a uniform interface, which allows the extension and custatimon of predefined proper-
ties to meet individual (e.g., application-specific) neadsd additional properties to be
automatically integrated in the overall representatiopesformance behavior. In addition,
isolating frequently used abstractions (i.e., state secggeand pointer attributes) in a sepa-
rate layer substantially simplifies the property specificateXPERT has been successfully
applied to several real-world applications.

The main accomplishments of this work are:

e A formal characterization of complex inefficient behaviarterms of compound
events that can be automatically detected in event traces.

e Mechanisms that hide the complexity within compound evemcHEications and,
thus, allow a simple description of complex inefficient babaon a high level of
abstraction.
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e A specification of common performance problems relatedrtg Opemp, and hy-
brid applications based on this method.

¢ A uniform multidimensional representation of performabedavior which provides
the ability to conveniently correlate different behavioi single integrated view.

e A modular tool architecture which allows the set of predefiperformance proper-
ties to be extended by the experienced user to meet indivichedls.

Future work should focus on extending tkie! event model to include the more recent
features ofvpPi 2, such as parallel fileo, remote memory access, and dynamic process
management. Also the remaining issues of Qgersuch as nested parallelism, should be
addressed to achieve a broader coverage of applications.

Moreover, the current set of compound events only refersrtgpbral relationships among
their constituents. However, since various additionalricgt such as hardware perfor-
mance counters, are easily available using performangeteplibraries, such ascL [9],
an integration of performance counters into the event madght be a promising en-
hancement in view of the increasingly complex memory harigs present in modern
microprocessor architectures.

The degree of automation could also be increased by autcetigtsearching the perfor-
mance space and expanding nodes of interest in the treaylispl

Finally, the current shape of the performance space doesowet all possible aspects of
performance analysis. Continuing the considerations f&attion 4.7.3, a future design
might address missing aspects by adding new dimensions for:

e Time
e Application-level abstractions

e Multiple event traces

In particular, adaptive algorithms exhibit a strongly thakependent performance behav-
ior. This could be reflected in the performance space bytmaring the execution time
into fractions associated with different execution phaweiserations of the main loop in
the case of iterative applications. Then, it would be pdedit» show how performance
behavior evolves over time.

In addition, instead of only computing the distribution afrfprmance losses across the
call tree or across different threads, it would be intengsto exploit the ideas of Shende
[69] about application-level instrumentation by extempihe current scheme of an event’s
location with respect to application-level abstractisg;h as simulation subdomains.

A very important and challenging extension concerns coatparanalysis of different ex-
periments resulting from different execution configuraipfrom different input-data sets,
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or from different program versions. This could provide gidiinto scalability, into data-

dependent behavior, which might also influence the timesddent behavior, and into the
effect of optimizations. Here, the particular challengss lin the varying structure of the
remaining dimensions. For example, the call tree might ghaas a result of different
input data, or the set of locations will become larger whemeaasing the number of pro-
cesses. Future research on this specific problem mightre@nthe work of Karanvanic

and Miller [46].
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