000281469 001__ 281469
000281469 005__ 20210129221742.0
000281469 0247_ $$2doi$$a10.1016/j.rse.2015.06.025
000281469 0247_ $$2ISSN$$a0034-4257
000281469 0247_ $$2ISSN$$a1879-0704
000281469 0247_ $$2WOS$$aWOS:000361405500013
000281469 037__ $$aFZJ-2016-01162
000281469 041__ $$aEnglish
000281469 082__ $$a050
000281469 1001_ $$0P:(DE-HGF)0$$aLievens, H.$$b0$$eCorresponding author
000281469 245__ $$aSMOS soil moisture assimilation for improved hydrologic simulation in the Murray Darling Basin, Australia
000281469 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2015
000281469 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1454508389_9279
000281469 3367_ $$2DataCite$$aOutput Types/Journal article
000281469 3367_ $$00$$2EndNote$$aJournal Article
000281469 3367_ $$2BibTeX$$aARTICLE
000281469 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000281469 3367_ $$2DRIVER$$aarticle
000281469 520__ $$aThis study explores the benefits of assimilating SMOS soil moisture retrievals for hydrologic modeling, with a focus on soil moisture and streamflow simulations in the Murray Darling Basin, Australia. In this basin, floods occur relatively frequently and initial catchment storage is known to be key to runoff generation. The land surface model is the Variable Infiltration Capacity (VIC) model. The model is calibrated using the available streamflow records of 169 gauge stations across the Murray Darling Basin. The VIC soil moisture forecast is sequentially updated with observations from the SMOS Level 3 CATDS (Centre Aval de Traitement des Données SMOS) soil moisture product using the Ensemble Kalman filter. The assimilation algorithm accounts for the spatial mismatch between the model (0.125°) and the SMOS observation (25 km) grids. Three widely-used methods for removing bias between model simulations and satellite observations of soil moisture are evaluated. These methods match the first, second and higher order moments of the soil moisture distributions, respectively. In this study, the first order bias correction, i.e. the rescaling of the long term mean, is the recommended method. Preserving the observational variability of the SMOS soil moisture data leads to improved soil moisture updates, particularly for dry and wet conditions, and enhances initial conditions for runoff generation. Second or higher order bias correction, which includes a rescaling of the variance, decreases the temporal variability of the assimilation results. In comparison with in situ measurements of OzNet, the assimilation with mean bias correction reduces the root mean square error (RMSE) of the modeled soil moisture from 0.058 m3/m3 to 0.046 m3/m3 and increases the correlation from 0.564 to 0.714. These improvements in antecedent wetness conditions further translate into improved predictions of associated water fluxes, particularly runoff peaks. In conclusion, the results of this study clearly demonstrate the merit of SMOS data assimilation for soil moisture and streamflow predictions at the large scale.
000281469 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000281469 588__ $$aDataset connected to CrossRef
000281469 7001_ $$0P:(DE-HGF)0$$aTomer, S. K.$$b1
000281469 7001_ $$0P:(DE-HGF)0$$aAl Bitar, A.$$b2
000281469 7001_ $$0P:(DE-HGF)0$$aDe Lannoy, G. J. M.$$b3
000281469 7001_ $$0P:(DE-HGF)0$$aDrusch, M.$$b4
000281469 7001_ $$0P:(DE-HGF)0$$aDumedah, G.$$b5
000281469 7001_ $$0P:(DE-Juel1)138662$$aHendricks-Franssen, Harrie-Jan$$b6
000281469 7001_ $$0P:(DE-HGF)0$$aKerr, Y. H.$$b7
000281469 7001_ $$0P:(DE-HGF)0$$aMartens, B.$$b8
000281469 7001_ $$0P:(DE-HGF)0$$aPan, M.$$b9
000281469 7001_ $$0P:(DE-HGF)0$$aRoundy, J. K.$$b10
000281469 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b11$$ufzj
000281469 7001_ $$0P:(DE-HGF)0$$aWalker, J. P.$$b12
000281469 7001_ $$0P:(DE-HGF)0$$aWood, E. F.$$b13
000281469 7001_ $$0P:(DE-HGF)0$$aVerhoest, N. E. C.$$b14
000281469 7001_ $$0P:(DE-HGF)0$$aPauwels, V. R. N.$$b15
000281469 773__ $$0PERI:(DE-600)1498713-2$$a10.1016/j.rse.2015.06.025$$gVol. 168, p. 146 - 162$$p146 - 162$$tRemote sensing of environment$$v168$$x0034-4257$$y2015
000281469 8564_ $$uhttps://juser.fz-juelich.de/record/281469/files/1-s2.0-S0034425715300547-main.pdf$$yRestricted
000281469 8564_ $$uhttps://juser.fz-juelich.de/record/281469/files/1-s2.0-S0034425715300547-main.gif?subformat=icon$$xicon$$yRestricted
000281469 8564_ $$uhttps://juser.fz-juelich.de/record/281469/files/1-s2.0-S0034425715300547-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000281469 8564_ $$uhttps://juser.fz-juelich.de/record/281469/files/1-s2.0-S0034425715300547-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000281469 8564_ $$uhttps://juser.fz-juelich.de/record/281469/files/1-s2.0-S0034425715300547-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000281469 8564_ $$uhttps://juser.fz-juelich.de/record/281469/files/1-s2.0-S0034425715300547-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000281469 909CO $$ooai:juser.fz-juelich.de:281469$$pVDB:Earth_Environment$$pVDB
000281469 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000281469 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000281469 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bREMOTE SENS ENVIRON : 2014
000281469 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bREMOTE SENS ENVIRON : 2014
000281469 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000281469 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000281469 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000281469 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000281469 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000281469 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000281469 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000281469 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000281469 9141_ $$y2015
000281469 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000281469 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich GmbH$$b11$$kFZJ
000281469 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000281469 920__ $$lyes
000281469 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000281469 980__ $$ajournal
000281469 980__ $$aVDB
000281469 980__ $$aUNRESTRICTED
000281469 980__ $$aI:(DE-Juel1)IBG-3-20101118