001     281469
005     20210129221742.0
024 7 _ |2 doi
|a 10.1016/j.rse.2015.06.025
024 7 _ |2 ISSN
|a 0034-4257
024 7 _ |2 ISSN
|a 1879-0704
024 7 _ |2 WOS
|a WOS:000361405500013
037 _ _ |a FZJ-2016-01162
041 _ _ |a English
082 _ _ |a 050
100 1 _ |0 P:(DE-HGF)0
|a Lievens, H.
|b 0
|e Corresponding author
245 _ _ |a SMOS soil moisture assimilation for improved hydrologic simulation in the Murray Darling Basin, Australia
260 _ _ |a Amsterdam [u.a.]
|b Elsevier Science
|c 2015
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1454508389_9279
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a This study explores the benefits of assimilating SMOS soil moisture retrievals for hydrologic modeling, with a focus on soil moisture and streamflow simulations in the Murray Darling Basin, Australia. In this basin, floods occur relatively frequently and initial catchment storage is known to be key to runoff generation. The land surface model is the Variable Infiltration Capacity (VIC) model. The model is calibrated using the available streamflow records of 169 gauge stations across the Murray Darling Basin. The VIC soil moisture forecast is sequentially updated with observations from the SMOS Level 3 CATDS (Centre Aval de Traitement des Données SMOS) soil moisture product using the Ensemble Kalman filter. The assimilation algorithm accounts for the spatial mismatch between the model (0.125°) and the SMOS observation (25 km) grids. Three widely-used methods for removing bias between model simulations and satellite observations of soil moisture are evaluated. These methods match the first, second and higher order moments of the soil moisture distributions, respectively. In this study, the first order bias correction, i.e. the rescaling of the long term mean, is the recommended method. Preserving the observational variability of the SMOS soil moisture data leads to improved soil moisture updates, particularly for dry and wet conditions, and enhances initial conditions for runoff generation. Second or higher order bias correction, which includes a rescaling of the variance, decreases the temporal variability of the assimilation results. In comparison with in situ measurements of OzNet, the assimilation with mean bias correction reduces the root mean square error (RMSE) of the modeled soil moisture from 0.058 m3/m3 to 0.046 m3/m3 and increases the correlation from 0.564 to 0.714. These improvements in antecedent wetness conditions further translate into improved predictions of associated water fluxes, particularly runoff peaks. In conclusion, the results of this study clearly demonstrate the merit of SMOS data assimilation for soil moisture and streamflow predictions at the large scale.
536 _ _ |0 G:(DE-HGF)POF3-255
|a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-HGF)0
|a Tomer, S. K.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Al Bitar, A.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a De Lannoy, G. J. M.
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Drusch, M.
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Dumedah, G.
|b 5
700 1 _ |0 P:(DE-Juel1)138662
|a Hendricks-Franssen, Harrie-Jan
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Kerr, Y. H.
|b 7
700 1 _ |0 P:(DE-HGF)0
|a Martens, B.
|b 8
700 1 _ |0 P:(DE-HGF)0
|a Pan, M.
|b 9
700 1 _ |0 P:(DE-HGF)0
|a Roundy, J. K.
|b 10
700 1 _ |0 P:(DE-Juel1)129549
|a Vereecken, Harry
|b 11
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Walker, J. P.
|b 12
700 1 _ |0 P:(DE-HGF)0
|a Wood, E. F.
|b 13
700 1 _ |0 P:(DE-HGF)0
|a Verhoest, N. E. C.
|b 14
700 1 _ |0 P:(DE-HGF)0
|a Pauwels, V. R. N.
|b 15
773 _ _ |0 PERI:(DE-600)1498713-2
|a 10.1016/j.rse.2015.06.025
|g Vol. 168, p. 146 - 162
|p 146 - 162
|t Remote sensing of environment
|v 168
|x 0034-4257
|y 2015
856 4 _ |u https://juser.fz-juelich.de/record/281469/files/1-s2.0-S0034425715300547-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/281469/files/1-s2.0-S0034425715300547-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/281469/files/1-s2.0-S0034425715300547-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/281469/files/1-s2.0-S0034425715300547-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/281469/files/1-s2.0-S0034425715300547-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/281469/files/1-s2.0-S0034425715300547-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:281469
|p VDB
|p VDB:Earth_Environment
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-HGF)0
|a Forschungszentrum Jülich GmbH
|b 6
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129549
|a Forschungszentrum Jülich GmbH
|b 11
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-255
|1 G:(DE-HGF)POF3-250
|2 G:(DE-HGF)POF3-200
|a DE-HGF
|l Terrestrische Umwelt
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2015
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b REMOTE SENS ENVIRON : 2014
915 _ _ |0 StatID:(DE-HGF)9905
|2 StatID
|a IF >= 5
|b REMOTE SENS ENVIRON : 2014
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0550
|2 StatID
|a No Authors Fulltext
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21