000281475 001__ 281475
000281475 005__ 20240711085628.0
000281475 0247_ $$2Handle$$a2128/15708
000281475 037__ $$aFZJ-2016-01168
000281475 041__ $$aEnglish
000281475 1001_ $$0P:(DE-Juel1)159367$$aReppert, Thorsten$$b0$$eCorresponding author$$ufzj
000281475 1112_ $$aBatterietag/Kraftwerk Batterie 2015$$cAachen$$d2015-04-27 - 2015-04-29$$gKBT2015$$wGermany
000281475 245__ $$aTape casting of oxide-ceramic electrolyte layers for all-solid-state lithium batteries
000281475 260__ $$c2015
000281475 3367_ $$033$$2EndNote$$aConference Paper
000281475 3367_ $$2BibTeX$$aINPROCEEDINGS
000281475 3367_ $$2DRIVER$$aconferenceObject
000281475 3367_ $$2ORCID$$aCONFERENCE_POSTER
000281475 3367_ $$2DataCite$$aOutput Types/Conference Poster
000281475 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1454059355_23028
000281475 520__ $$aAll-solid-state lithium batteries (ASB) have better safety properties due to the incombustible solid electrolyte than commercial lithium ion batteries (LIB), which use flammable organic liquid as electrolyte. Their compatibility with using high voltage cathode materials enables a higher energy density. Oxide-ceramic lithium ion conductors such as Li7La3Zr2O12 (LLZ) [1] have a good total ion conductivity of about 10 4 S cm-1 at room temperature [2]. The stability of LLZ when contacting lithium metal and its wide electrochemical stability window (usable up to 8V vs. Li/Li+) would provide higher energy densities than common LIB. In combination with its advantage of inertness in oxygen atmosphere, which simplifies their handling during materials processing, it is one of the most promising candidates for all-solid-state battery application. LLZ was synthesized via solid state reaction and spray pyrolysis. The structural stability and LLZ’s total ion conductivity were improved by substitution of Al [2], Ta [3] and Y [4] into the LLZ structure. Ta substituted LLZ indicated the highest total ionic conductivity of about 10-3 S cm-1 and almost no dependence on its lithium concentration. After investigation of bulk electrolyte materials, an ASB prototype cell using bulk LLZ as solid electrolyte was fabricated at IEK-1 and proved to run an LED. To meet the technical requirements of real battery systems, large size LLZ functional layers need to be fabricated by different established technologies. To bridge from lab works to application, the investigated LLZ has been processed by tape casting and was used for sintering studies, in order to obtain highly dense solid electrolyte layers and also mixed electrode films for prospective all-solid-state lithium batteries.References:[1] Murugan et al., Angew. Chem. Int. Ed. 46 (2007) 7778.[2] Hubaud et al., J. Mater. Chem. A. 1 (2013) 8813. [3] Buschmann et al., Phys. Chem. Chem. Phys. 13 (2011) 19378.[4] Murugan et. al., Electrochem. Commun. 13 (2011) 1373.
000281475 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000281475 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000281475 7001_ $$0P:(DE-Juel1)156244$$aTsai, Chih-Long$$b1$$ufzj
000281475 7001_ $$0P:(DE-Juel1)145623$$aFinsterbusch, Martin$$b2$$ufzj
000281475 7001_ $$0P:(DE-Juel1)129580$$aUhlenbruck, Sven$$b3$$ufzj
000281475 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b4$$ufzj
000281475 7001_ $$0P:(DE-Juel1)129591$$aBram, Martin$$b5$$ufzj
000281475 8564_ $$uhttps://juser.fz-juelich.de/record/281475/files/Poster%20Reppert%20KBT%202015%20final.pdf$$yOpenAccess
000281475 8564_ $$uhttps://juser.fz-juelich.de/record/281475/files/Poster%20Reppert%20KBT%202015%20final.gif?subformat=icon$$xicon$$yOpenAccess
000281475 8564_ $$uhttps://juser.fz-juelich.de/record/281475/files/Poster%20Reppert%20KBT%202015%20final.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000281475 8564_ $$uhttps://juser.fz-juelich.de/record/281475/files/Poster%20Reppert%20KBT%202015%20final.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000281475 8564_ $$uhttps://juser.fz-juelich.de/record/281475/files/Poster%20Reppert%20KBT%202015%20final.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000281475 8564_ $$uhttps://juser.fz-juelich.de/record/281475/files/Poster%20Reppert%20KBT%202015%20final.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000281475 909CO $$ooai:juser.fz-juelich.de:281475$$pVDB$$popen_access$$pdriver$$popenaire
000281475 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159367$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000281475 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156244$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000281475 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145623$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000281475 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129580$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000281475 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000281475 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129591$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000281475 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000281475 9141_ $$y2015
000281475 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000281475 920__ $$lyes
000281475 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000281475 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x1
000281475 9801_ $$aFullTexts
000281475 980__ $$aposter
000281475 980__ $$aVDB
000281475 980__ $$aUNRESTRICTED
000281475 980__ $$aI:(DE-Juel1)IEK-1-20101013
000281475 980__ $$aI:(DE-82)080011_20140620
000281475 981__ $$aI:(DE-Juel1)IMD-2-20101013