001     281475
005     20240711085628.0
024 7 _ |a 2128/15708
|2 Handle
037 _ _ |a FZJ-2016-01168
041 _ _ |a English
100 1 _ |a Reppert, Thorsten
|0 P:(DE-Juel1)159367
|b 0
|e Corresponding author
|u fzj
111 2 _ |a Batterietag/Kraftwerk Batterie 2015
|g KBT2015
|c Aachen
|d 2015-04-27 - 2015-04-29
|w Germany
245 _ _ |a Tape casting of oxide-ceramic electrolyte layers for all-solid-state lithium batteries
260 _ _ |c 2015
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1454059355_23028
|2 PUB:(DE-HGF)
520 _ _ |a All-solid-state lithium batteries (ASB) have better safety properties due to the incombustible solid electrolyte than commercial lithium ion batteries (LIB), which use flammable organic liquid as electrolyte. Their compatibility with using high voltage cathode materials enables a higher energy density. Oxide-ceramic lithium ion conductors such as Li7La3Zr2O12 (LLZ) [1] have a good total ion conductivity of about 10 4 S cm-1 at room temperature [2]. The stability of LLZ when contacting lithium metal and its wide electrochemical stability window (usable up to 8V vs. Li/Li+) would provide higher energy densities than common LIB. In combination with its advantage of inertness in oxygen atmosphere, which simplifies their handling during materials processing, it is one of the most promising candidates for all-solid-state battery application. LLZ was synthesized via solid state reaction and spray pyrolysis. The structural stability and LLZ’s total ion conductivity were improved by substitution of Al [2], Ta [3] and Y [4] into the LLZ structure. Ta substituted LLZ indicated the highest total ionic conductivity of about 10-3 S cm-1 and almost no dependence on its lithium concentration. After investigation of bulk electrolyte materials, an ASB prototype cell using bulk LLZ as solid electrolyte was fabricated at IEK-1 and proved to run an LED. To meet the technical requirements of real battery systems, large size LLZ functional layers need to be fabricated by different established technologies. To bridge from lab works to application, the investigated LLZ has been processed by tape casting and was used for sintering studies, in order to obtain highly dense solid electrolyte layers and also mixed electrode films for prospective all-solid-state lithium batteries.References:[1] Murugan et al., Angew. Chem. Int. Ed. 46 (2007) 7778.[2] Hubaud et al., J. Mater. Chem. A. 1 (2013) 8813. [3] Buschmann et al., Phys. Chem. Chem. Phys. 13 (2011) 19378.[4] Murugan et. al., Electrochem. Commun. 13 (2011) 1373.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
700 1 _ |a Tsai, Chih-Long
|0 P:(DE-Juel1)156244
|b 1
|u fzj
700 1 _ |a Finsterbusch, Martin
|0 P:(DE-Juel1)145623
|b 2
|u fzj
700 1 _ |a Uhlenbruck, Sven
|0 P:(DE-Juel1)129580
|b 3
|u fzj
700 1 _ |a Guillon, Olivier
|0 P:(DE-Juel1)161591
|b 4
|u fzj
700 1 _ |a Bram, Martin
|0 P:(DE-Juel1)129591
|b 5
|u fzj
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/281475/files/Poster%20Reppert%20KBT%202015%20final.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/281475/files/Poster%20Reppert%20KBT%202015%20final.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/281475/files/Poster%20Reppert%20KBT%202015%20final.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/281475/files/Poster%20Reppert%20KBT%202015%20final.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/281475/files/Poster%20Reppert%20KBT%202015%20final.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/281475/files/Poster%20Reppert%20KBT%202015%20final.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:281475
|p openaire
|p driver
|p open_access
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)159367
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)156244
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)145623
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129580
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)161591
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129591
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2015
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l JARA-ENERGY
|x 1
980 1 _ |a FullTexts
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-82)080011_20140620
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21