000281501 001__ 281501
000281501 005__ 20240711113613.0
000281501 0247_ $$2doi$$a10.1063/1.4934651
000281501 0247_ $$2ISSN$$a1070-664X
000281501 0247_ $$2ISSN$$a1089-7674
000281501 0247_ $$2WOS$$aWOS:000364403600058
000281501 0247_ $$2Handle$$a2128/18134
000281501 037__ $$aFZJ-2016-01194
000281501 082__ $$a530
000281501 1001_ $$0P:(DE-HGF)0$$aCiaccio, G.$$b0$$eCorresponding author
000281501 245__ $$aHelical modulation of the electrostatic plasma potential due to edge magnetic islands induced by resonant magnetic perturbation fields at TEXTOR
000281501 260__ $$a[S.l.]$$bAmerican Institute of Physics$$c2015
000281501 3367_ $$2DRIVER$$aarticle
000281501 3367_ $$2DataCite$$aOutput Types/Journal article
000281501 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1454512082_9279
000281501 3367_ $$2BibTeX$$aARTICLE
000281501 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000281501 3367_ $$00$$2EndNote$$aJournal Article
000281501 520__ $$aThe electrostatic response of the edge plasma to a magnetic island induced by resonant magnetic perturbations to the plasma edge of the circular limiter tokamak TEXTOR is analyzed. Measurements of plasma potential are interpreted by simulations with the Hamiltonian guiding center code Orbit. We find a strong correlation between the magnetic field topology and the poloidal modulation of the measured plasma potential. The ion and electron drifts yield a predominantly electron driven radial diffusion when approaching the island X-point while ion diffusivities are generally an order of magnitude smaller. This causes a strong radial electric field structure pointing outward from the island O-point. The good agreement found between measured and modeled plasma potential connected to the enhanced radial particle diffusivities supports that a magnetic island in the edge of a tokamak plasma can act as convective cell. We show in detail that the particular, non-ambipolar drifts of electrons and ions in a 3D magnetic topology account for these effects. An analytical model for the plasma potential is implemented in the code Orbit, and analyses of ion and electron radial diffusion show that both ion- and electron-dominated transport regimes can exist, which are known as ion and electron root solutions in stellarators. This finding and comparison with reversed field pinch studies and stellarator literature suggest that the role of magnetic islands as convective cells and hence as major radial particle transport drivers could be a generic mechanism in 3D plasma boundary layers.
000281501 536__ $$0G:(DE-HGF)POF3-172$$a172 - Tokamak Physics (POF3-172)$$cPOF3-172$$fPOF III$$x0
000281501 588__ $$aDataset connected to CrossRef
000281501 7001_ $$0P:(DE-Juel1)6790$$aSchmitz, O.$$b1
000281501 7001_ $$00000-0001-8586-2168$$aSpizzo, G.$$b2
000281501 7001_ $$0P:(DE-Juel1)4461$$aAbdullaev, Sadrilla$$b3
000281501 7001_ $$00000-0002-7943-2580$$aEvans, T. E.$$b4
000281501 7001_ $$0P:(DE-Juel1)167105$$aFrerichs, H.$$b5
000281501 7001_ $$0P:(DE-HGF)0$$aWhite, R. B.$$b6
000281501 773__ $$0PERI:(DE-600)1472746-8$$a10.1063/1.4934651$$gVol. 22, no. 10, p. 102516 -$$n10$$p102516 -$$tPhysics of plasmas$$v22$$x1089-7674$$y2015
000281501 8564_ $$uhttps://juser.fz-juelich.de/record/281501/files/1.4934651.pdf$$yOpenAccess
000281501 8564_ $$uhttps://juser.fz-juelich.de/record/281501/files/1.4934651.gif?subformat=icon$$xicon$$yOpenAccess
000281501 8564_ $$uhttps://juser.fz-juelich.de/record/281501/files/1.4934651.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000281501 8564_ $$uhttps://juser.fz-juelich.de/record/281501/files/1.4934651.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000281501 8564_ $$uhttps://juser.fz-juelich.de/record/281501/files/1.4934651.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000281501 909CO $$ooai:juser.fz-juelich.de:281501$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000281501 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000281501 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS PLASMAS : 2014
000281501 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000281501 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000281501 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000281501 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000281501 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000281501 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000281501 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000281501 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000281501 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000281501 9141_ $$y2015
000281501 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)6790$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000281501 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)4461$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000281501 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167105$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000281501 9131_ $$0G:(DE-HGF)POF3-172$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vTokamak Physics$$x0
000281501 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000281501 9801_ $$aFullTexts
000281501 980__ $$ajournal
000281501 980__ $$aVDB
000281501 980__ $$aUNRESTRICTED
000281501 980__ $$aI:(DE-Juel1)IEK-4-20101013
000281501 981__ $$aI:(DE-Juel1)IFN-1-20101013