001     281501
005     20240711113613.0
024 7 _ |2 doi
|a 10.1063/1.4934651
024 7 _ |2 ISSN
|a 1070-664X
024 7 _ |2 ISSN
|a 1089-7674
024 7 _ |2 WOS
|a WOS:000364403600058
024 7 _ |2 Handle
|a 2128/18134
037 _ _ |a FZJ-2016-01194
082 _ _ |a 530
100 1 _ |0 P:(DE-HGF)0
|a Ciaccio, G.
|b 0
|e Corresponding author
245 _ _ |a Helical modulation of the electrostatic plasma potential due to edge magnetic islands induced by resonant magnetic perturbation fields at TEXTOR
260 _ _ |a [S.l.]
|b American Institute of Physics
|c 2015
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1454512082_9279
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a The electrostatic response of the edge plasma to a magnetic island induced by resonant magnetic perturbations to the plasma edge of the circular limiter tokamak TEXTOR is analyzed. Measurements of plasma potential are interpreted by simulations with the Hamiltonian guiding center code Orbit. We find a strong correlation between the magnetic field topology and the poloidal modulation of the measured plasma potential. The ion and electron drifts yield a predominantly electron driven radial diffusion when approaching the island X-point while ion diffusivities are generally an order of magnitude smaller. This causes a strong radial electric field structure pointing outward from the island O-point. The good agreement found between measured and modeled plasma potential connected to the enhanced radial particle diffusivities supports that a magnetic island in the edge of a tokamak plasma can act as convective cell. We show in detail that the particular, non-ambipolar drifts of electrons and ions in a 3D magnetic topology account for these effects. An analytical model for the plasma potential is implemented in the code Orbit, and analyses of ion and electron radial diffusion show that both ion- and electron-dominated transport regimes can exist, which are known as ion and electron root solutions in stellarators. This finding and comparison with reversed field pinch studies and stellarator literature suggest that the role of magnetic islands as convective cells and hence as major radial particle transport drivers could be a generic mechanism in 3D plasma boundary layers.
536 _ _ |0 G:(DE-HGF)POF3-172
|a 172 - Tokamak Physics (POF3-172)
|c POF3-172
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-Juel1)6790
|a Schmitz, O.
|b 1
700 1 _ |0 0000-0001-8586-2168
|a Spizzo, G.
|b 2
700 1 _ |0 P:(DE-Juel1)4461
|a Abdullaev, Sadrilla
|b 3
700 1 _ |0 0000-0002-7943-2580
|a Evans, T. E.
|b 4
700 1 _ |0 P:(DE-Juel1)167105
|a Frerichs, H.
|b 5
700 1 _ |0 P:(DE-HGF)0
|a White, R. B.
|b 6
773 _ _ |0 PERI:(DE-600)1472746-8
|a 10.1063/1.4934651
|g Vol. 22, no. 10, p. 102516 -
|n 10
|p 102516 -
|t Physics of plasmas
|v 22
|x 1089-7674
|y 2015
856 4 _ |u https://juser.fz-juelich.de/record/281501/files/1.4934651.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/281501/files/1.4934651.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/281501/files/1.4934651.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/281501/files/1.4934651.jpg?subformat=icon-700
|x icon-700
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/281501/files/1.4934651.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:281501
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)6790
|a Forschungszentrum Jülich GmbH
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)4461
|a Forschungszentrum Jülich GmbH
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)167105
|a Forschungszentrum Jülich GmbH
|b 5
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-172
|1 G:(DE-HGF)POF3-170
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|l Kernfusion
|v Tokamak Physics
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2015
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b PHYS PLASMAS : 2014
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21