000281503 001__ 281503
000281503 005__ 20240711085628.0
000281503 0247_ $$2doi$$a10.1021/acsami.5b07090
000281503 0247_ $$2ISSN$$a1944-8244
000281503 0247_ $$2ISSN$$a1944-8252
000281503 0247_ $$2WOS$$aWOS:000363001500057
000281503 0247_ $$2altmetric$$aaltmetric:21828328
000281503 0247_ $$2pmid$$apmid:26381359
000281503 037__ $$aFZJ-2016-01196
000281503 041__ $$aEnglish
000281503 082__ $$a540
000281503 1001_ $$0P:(DE-Juel1)145805$$aBünting, Aiko$$b0$$eCorresponding author
000281503 245__ $$aThree-Dimensional, Fibrous Lithium Iron Phosphate Structures Deposited by Magnetron Sputtering
000281503 260__ $$aWashington, DC$$c2015
000281503 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1453972777_29958
000281503 3367_ $$2DataCite$$aOutput Types/Journal article
000281503 3367_ $$00$$2EndNote$$aJournal Article
000281503 3367_ $$2BibTeX$$aARTICLE
000281503 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000281503 3367_ $$2DRIVER$$aarticle
000281503 520__ $$aCrystalline, three-dimensional (3D) structured lithium iron phosphate (LiFePO4) thin films with additional carbon are fabricated by a radio frequency (RF) magnetron-sputtering process in a single step. The 3D structured thin films are obtained at deposition temperatures of 600 °C and deposition times longer than 60 min by using a conventional sputtering setup. In contrast to glancing angle deposition (GLAD) techniques, no tilting of the substrate is required. Thin films are characterized by X-ray diffraction (XRD), Raman spectrospcopy, scanning electron microscopy (SEM), cyclic voltammetry (CV), and galvanostatic charging and discharging. The structured LiFePO4 + C thin films consist of fibers that grow perpendicular to the substrate surface. The fibers have diameters up to 500 nm and crystallize in the desired olivine structure. The 3D structured thin films have superior electrochemical properties compared with dense two-dimensional (2D) LiFePO4 thin films and are, hence, very promising for application in 3D microbatteries.
000281503 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000281503 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000281503 588__ $$aDataset connected to CrossRef
000281503 7001_ $$0P:(DE-Juel1)129580$$aUhlenbruck, Sven$$b1
000281503 7001_ $$0P:(DE-Juel1)129662$$aSebold, Doris$$b2
000281503 7001_ $$0P:(DE-Juel1)129594$$aBuchkremer, H. P.$$b3
000281503 7001_ $$0P:(DE-Juel1)129670$$aVassen, Robert$$b4
000281503 773__ $$0PERI:(DE-600)2467494-1$$a10.1021/acsami.5b07090$$gVol. 7, no. 40, p. 22594 - 22600$$n40$$p22594 - 22600$$tACS applied materials & interfaces$$v7$$x1944-8252$$y2015
000281503 8564_ $$uhttps://juser.fz-juelich.de/record/281503/files/acsami%252E5b07090.pdf$$yRestricted
000281503 8564_ $$uhttps://juser.fz-juelich.de/record/281503/files/acsami%252E5b07090.gif?subformat=icon$$xicon$$yRestricted
000281503 8564_ $$uhttps://juser.fz-juelich.de/record/281503/files/acsami%252E5b07090.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000281503 8564_ $$uhttps://juser.fz-juelich.de/record/281503/files/acsami%252E5b07090.jpg?subformat=icon-180$$xicon-180$$yRestricted
000281503 8564_ $$uhttps://juser.fz-juelich.de/record/281503/files/acsami%252E5b07090.jpg?subformat=icon-640$$xicon-640$$yRestricted
000281503 8564_ $$uhttps://juser.fz-juelich.de/record/281503/files/acsami%252E5b07090.pdf?subformat=pdfa$$xpdfa$$yRestricted
000281503 909CO $$ooai:juser.fz-juelich.de:281503$$pVDB
000281503 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129580$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000281503 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129662$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000281503 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129594$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000281503 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129670$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000281503 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000281503 9141_ $$y2015
000281503 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000281503 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000281503 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL MATER INTER : 2014
000281503 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS APPL MATER INTER : 2014
000281503 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000281503 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000281503 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000281503 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000281503 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000281503 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000281503 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000281503 920__ $$lyes
000281503 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000281503 980__ $$ajournal
000281503 980__ $$aVDB
000281503 980__ $$aUNRESTRICTED
000281503 980__ $$aI:(DE-Juel1)IEK-1-20101013
000281503 981__ $$aI:(DE-Juel1)IMD-2-20101013