001     281511
005     20240625095038.0
024 7 _ |a 10.1088/0953-8984/27/30/306301
|2 doi
024 7 _ |a 0953-8984
|2 ISSN
024 7 _ |a 1361-648X
|2 ISSN
024 7 _ |a WOS:000358585900015
|2 WOS
037 _ _ |a FZJ-2016-01200
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Zeller, Rudolf
|0 P:(DE-Juel1)131057
|b 0
|e Corresponding author
|u fzj
245 _ _ |a The Korringa–Kohn–Rostoker method with projection potentials: exact result for the density
260 _ _ |a Bristol
|c 2015
|b IOP Publ.
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1454321294_19496
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a A well known problem in the Korringa–Kohn–Rostoker (KKR) multiple-scattering method concerns the error in density normalization arising from finite angular momentum expansions used in numerical treatments. It is shown that this problem can be solved if the potential around each atom is understood as a non-local projection potential in angular momentum space and that the density can be calculated exactly without infinite angular momentum sums if the projection acts on a finite subspace of spherical harmonics. This restriction implicates no loss of generality because an arbitrary potential can be approximated by increasing the subspace as closely as desired.
536 _ _ |a 144 - Controlling Collective States (POF3-144)
|0 G:(DE-HGF)POF3-144
|c POF3-144
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
773 _ _ |a 10.1088/0953-8984/27/30/306301
|g Vol. 27, no. 30, p. 306301 -
|0 PERI:(DE-600)1472968-4
|n 30
|p 306301
|t Journal of physics / Condensed matter
|v 27
|y 2015
|x 1361-648X
856 4 _ |u https://juser.fz-juelich.de/record/281511/files/pdf.pdf
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/281511/files/pdf.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:281511
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)131057
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-144
|2 G:(DE-HGF)POF3-100
|v Controlling Collective States
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PHYS-CONDENS MAT : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-3-20090406
|k IAS-3
|l Theoretische Nanoelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-3-20090406
981 _ _ |a I:(DE-Juel1)PGI-2-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21