000281512 001__ 281512
000281512 005__ 20240625085706.0
000281512 0247_ $$2doi$$a10.1088/0953-8984/27/46/465201
000281512 0247_ $$2ISSN$$a0953-8984
000281512 0247_ $$2ISSN$$a1361-648X
000281512 0247_ $$2WOS$$aWOS:000365346700005
000281512 037__ $$aFZJ-2016-01201
000281512 041__ $$aEnglish
000281512 082__ $$a530
000281512 1001_ $$0P:(DE-Juel1)131057$$aZeller, Rudolf$$b0$$eCorresponding author$$ufzj
000281512 245__ $$aDirac Green function for angular projection potentials
000281512 260__ $$aBristol$$bIOP Publ.$$c2015
000281512 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1454052084_23029
000281512 3367_ $$2DataCite$$aOutput Types/Journal article
000281512 3367_ $$00$$2EndNote$$aJournal Article
000281512 3367_ $$2BibTeX$$aARTICLE
000281512 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000281512 3367_ $$2DRIVER$$aarticle
000281512 520__ $$aThe aim of this paper is twofold: first, it is shown that the angular dependence of the Dirac Green function can be described analytically for potentials with non-local dependence on the angular variables if they are chosen as projection potentials in angular momentum space. Because the local dependence on the radial variable can be treated to any precision with present computing capabilities, this means that the Green function can be calculated practically exactly. Second, it is shown that a result of this kind not only holds for a single angular projection potential but also more generally, for instance if space is divided into non-overlapping cells and a separate angular projection potential is used in each cell. This opens the way for relativistic density-functional calculations within a different perspective than the conventional one. Instead of trying to obtain the density for a given potential approximately as well as possible, the density is determined exactly for non-local potentials which can approximate arbitrary local potentials as well as desired
000281512 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000281512 588__ $$aDataset connected to CrossRef
000281512 773__ $$0PERI:(DE-600)1472968-4$$a10.1088/0953-8984/27/46/465201$$gVol. 27, no. 46, p. 465201 -$$n46$$p465201 -$$tJournal of physics / Condensed matter$$v27$$x1361-648X$$y2015
000281512 909CO $$ooai:juser.fz-juelich.de:281512$$pVDB
000281512 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131057$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000281512 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000281512 9141_ $$y2015
000281512 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000281512 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS-CONDENS MAT : 2014
000281512 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000281512 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000281512 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000281512 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000281512 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000281512 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000281512 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000281512 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000281512 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000281512 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000281512 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000281512 920__ $$lyes
000281512 9201_ $$0I:(DE-Juel1)IAS-3-20090406$$kIAS-3$$lTheoretische Nanoelektronik$$x0
000281512 980__ $$ajournal
000281512 980__ $$aVDB
000281512 980__ $$aUNRESTRICTED
000281512 980__ $$aI:(DE-Juel1)IAS-3-20090406
000281512 981__ $$aI:(DE-Juel1)PGI-2-20110106