000281512 001__ 281512 000281512 005__ 20240625085706.0 000281512 0247_ $$2doi$$a10.1088/0953-8984/27/46/465201 000281512 0247_ $$2ISSN$$a0953-8984 000281512 0247_ $$2ISSN$$a1361-648X 000281512 0247_ $$2WOS$$aWOS:000365346700005 000281512 037__ $$aFZJ-2016-01201 000281512 041__ $$aEnglish 000281512 082__ $$a530 000281512 1001_ $$0P:(DE-Juel1)131057$$aZeller, Rudolf$$b0$$eCorresponding author$$ufzj 000281512 245__ $$aDirac Green function for angular projection potentials 000281512 260__ $$aBristol$$bIOP Publ.$$c2015 000281512 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1454052084_23029 000281512 3367_ $$2DataCite$$aOutput Types/Journal article 000281512 3367_ $$00$$2EndNote$$aJournal Article 000281512 3367_ $$2BibTeX$$aARTICLE 000281512 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000281512 3367_ $$2DRIVER$$aarticle 000281512 520__ $$aThe aim of this paper is twofold: first, it is shown that the angular dependence of the Dirac Green function can be described analytically for potentials with non-local dependence on the angular variables if they are chosen as projection potentials in angular momentum space. Because the local dependence on the radial variable can be treated to any precision with present computing capabilities, this means that the Green function can be calculated practically exactly. Second, it is shown that a result of this kind not only holds for a single angular projection potential but also more generally, for instance if space is divided into non-overlapping cells and a separate angular projection potential is used in each cell. This opens the way for relativistic density-functional calculations within a different perspective than the conventional one. Instead of trying to obtain the density for a given potential approximately as well as possible, the density is determined exactly for non-local potentials which can approximate arbitrary local potentials as well as desired 000281512 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0 000281512 588__ $$aDataset connected to CrossRef 000281512 773__ $$0PERI:(DE-600)1472968-4$$a10.1088/0953-8984/27/46/465201$$gVol. 27, no. 46, p. 465201 -$$n46$$p465201 -$$tJournal of physics / Condensed matter$$v27$$x1361-648X$$y2015 000281512 909CO $$ooai:juser.fz-juelich.de:281512$$pVDB 000281512 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131057$$aForschungszentrum Jülich GmbH$$b0$$kFZJ 000281512 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0 000281512 9141_ $$y2015 000281512 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000281512 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS-CONDENS MAT : 2014 000281512 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000281512 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000281512 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000281512 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000281512 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext 000281512 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000281512 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000281512 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium 000281512 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000281512 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000281512 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000281512 920__ $$lyes 000281512 9201_ $$0I:(DE-Juel1)IAS-3-20090406$$kIAS-3$$lTheoretische Nanoelektronik$$x0 000281512 980__ $$ajournal 000281512 980__ $$aVDB 000281512 980__ $$aUNRESTRICTED 000281512 980__ $$aI:(DE-Juel1)IAS-3-20090406 000281512 981__ $$aI:(DE-Juel1)PGI-2-20110106