Collision-free speed model for pedestrian
dynamics
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Abstract We propose in this paper a minimal speed-based pedestrian model for
which particle dynamics are intrinsically collision-free. The speed model is an op-
timal velocity function depending on the agent length (i.e. particle diameter), max-
imum speed and time gap parameters. The direction model is a weighted sum of
exponential repulsion from the neighbors, calibrated by the repulsion rate and dis-
tance. The model’s main features like the reproduction of empirical phenomena are
analysed by simulation. We point out that phenomena of self-organisation observ-
able in force-based models and field studies can be reproduced by the collision-free
model with low computational effort.

1 Introduction

Modelling of pedestrian dynamics have been strongly developed since the 1990’s
[4, 23, 8]. Microscopic models describe the movement of individuals in two-
dimensional representation of space. They are used for theoretical purposes [14, 13],
as well as for applications e.g. design and conception of escape routes in build-
ings [24, 25] or optimal organization of mass events or public transport facilities
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(VISWalk [22], Legion [3], ...). In the microscopic class of models, pedestrians are
represented as autonomous entities (Lagrangian representation) with local interac-
tions. Complex collective phenomena of self-organisation emerge from the inter-
actions. Examples are the lane formation, clogging at bottlenecks, zipper effect or
intermittent flow at bottlenecks, stop-and-go waves, herding, strip formation or cir-
cular flows (see [4, 12] and references therein). Even simple microscopic models
can yield in rich dynamics [15, 6]. Yet, the relations between the microscopic model
parameters and the emergence of phenomena of self-organisation are not straight-
forward. In most of the cases, they have to be analysed by simulation.

Microscopic pedestrian models could be defined in continuous or discrete time,
space and state variables (see [23, Chapter 5]). One of the most investigated class
is the class of force-based (or acceleration) models [15, 6, 5]. They use an analogy
between pedestrian movement and Newtonian dynamics. Force-based approaches
allow to describe a large variety of pedestrian dynamics [15, 6]. Yet, this model class
describes particles with inertia and does not exclude particle collision and overlap-
ping. This is especially problematic at high densities [5]. Moreover, the force-based
approach may lead to numerical difficulties resulting in small time steps and high
computational complexity, or use of mollifies [16].

Pedestrian behaviors result from repulsive and attractive forces with the accel-
eration models. They are based on the visual perception of distances or obstacle
speeds resulting in instantaneous changing of the speed or the direction within the
speed models. Also, this model class is generally called vision-based. One example
is the synthetic-vision-based steering approach that notably allows to describe com-
plex collective structures avoiding gridlocks [20]. Also the velocity obstacle models
or reciprocal velocity obstacle model borrowed from robotics exist [10, 2]. These
models are defined in discrete time and are driven by collision avoidance. They
are by construction collision-free if the time step is smaller than a horizon time of
anticipation. In the evacuation model by Venel, the pedestrians move as fast as pos-
sible to the desired destination with no overlapping [17]. There exits some variants
of the model with different interaction strategies [26]. Note that there exists also
rule based multi-agent models aiming to describe pedestrian psychology (see for
instance [21, 11]) or mixed models, see for instance the gradient navigation model
where the direction model is defined at first order while the speed is of second order
[9]. In most of cases, these models need a large number of parameters with inherent
calibration difficulties and, as for force-based models, high computational efforts.

In this paper, we aim to develop a minimal model for which the dynamics are
by construction collision-free (i.e. overlapping-free). The model belongs to Maury
and Venel mathematical framework [17]. We show by simulation that it allows to
describe some expected phenomena of self-organisation observed in field studies or
in simulations with forced based models. The model is defined in section 2 while the
simulation results are presented in section 3. Conclusion and working perspective
are given in section 4.
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2 Collision-free speed-based pedestrian model

A continuous speed model is a derivative equation for the velocity. Typical examples
are
Xi:V(Xi,Xj,...) or Xi:V(Xl‘,Xj,...)Xei(X,',Xj,...), (1)

with x; the pedestrian position and X; the velocity of pedestrian i (see figure 1). The
velocity in regulated in one function for the first equality while the speed V and the
direction e; (unit vector) are regulated separately in the second approach.

Fig. 1 Notations used. x;, v; and 6; are the position, velocity and direction of the pedestrian i; ¢ is
the pedestrian size; e; ; is the unit vector from X; to X;; ; = (cos 6;,sin 6;) ; 5; j = |[x; — X;||.

2.1 Definition of the model

The speed model is the optimal speed (OV) function depending on the minimal
spacing in front. The approach is borrowed from road traffic model [1]. The OV
approach has been already developed with a force-based model [19]. Here we use
the OV function at the first order with the minimal spacing in front.

For a given pedestrian i, the set of the pedestrians in front is defined by

Ji={J, ei-e;<0 and |ef -e; ;| <{/s;;}. @)

The pedestrians in front are the pedestrians overlapping the grey area in figure 1.
The minimum distance in front s; is

s; = mins; ;. 3
i e, i,j ( )
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The model is
Xi:V(S,'(Xi,Xj,...)) Xei(Xi,Xj,---), @)

with V (-) the OV function and e;(x;,X;,...) the direction model to define. As shown
below, such model is by construction collision-free if

V(s)>0 foralls and V(s)=0 foralls</. Q)

In the following, the OV function is the piecewise linear V (s) = min{vy, max{0, (s —
£)/T}}, with vy the desired speed and T the time gap in following situations (¢ is
the pedestrian diameter, see figure 1). This OV function satisfies the collision-free
assumption (5). The direction model is a simplified version of the additive form of
the gradient navigation model [9]. It is based on a repulsion function depending on
the distances (s; ;) with the neighbours

ei(X,',Xj, .. ) = % (eo+ZjR(si7j)e,-,j), (6)

with e the desired direction given by a strategic model, N a normalization constant
such that [|e;|| = 1 and R(s) = a exp ((£—s)/D) the repulsion function, calibrated by
the coefficient a > 0 and distance D > 0. The parameter values used in the simulation
are presented in figure 2.

OV function V() Repulsion function R(-)
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Fig. 2 Functions and associated parameters for the model: The OV function (3 parameters, left
panel), and the repulsion function (2 parameters, right panel).

2.2 Collision-free property

Oppositely to the force-based models, the presence of collision and overlapping can
be controlled by construction with the speed-based models (non-overlapping con-
straint). If pedestrians are considered as discs with diameter ¢, the set of collision-
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free configurations is for a given pedestrian i
0i={x;ieR? s5;; > Vj}. (7)
The set of collision-free velocities
Cx, ={vER! s;j={ = €;-v;>0 and e;;-v; >0} (8)

is such that the speeds are nil or in opposite direction for a pedestrian in contact with
an other (see [17] for more general conditions). Therefore, if initially x;(0) € Q;,
then x; remains in Q; for any dynamics in Cy;. In these conditions Q; is an invariant
set for x;, i.e. the dynamics are collision-free (see also [18]). It is easy to see that the
model (4) belongs to this class if assumption (5) is satisfied. Consider s; ; = ¢ then
eithere;-e; ; <Oandthen j € J;,i.e.s; <s;; =~ and V(s;) = 0, or neither e; -€; ;>0
and then V (s;) > 0 since V/(-) > 0. Therefore v;-e; j = V(s;) x ¢;-€; j; > 0 and the
velocity belongs to Cy,. The arguments are valid for any direction model ;.

3 Model features

We describe in this section by simulation some characteristics of the model with
uni- and bi-directional flows. The parameter settings are given in figure 2. The sim-
ulations are done on rectangular systems with length L =9 m and width W =3 m
from random initial configurations and by using explicit Euler numerical scheme
with time step dt = 0.01 s.

3.1 Counter flows and the lane formation

We observed with the model the formation of lanes by direction for counter flows
(figure 3, left panels). Such phenomena frequently occurs in real data (see for in-
stance [27]). The system needs an organization time for that the lanes emerge (fig-
ure 3, top right panel), where the mean flow to the desired direction for counter flows
is compared to uni-directional ones). The formation of lanes is observed with the
model for some density levels up to p = 6 ped/ m? (figure 3, bottom right panel). As
expected, the density threshold value for that the lanes appear depends on the pedes-
trian size ¢ (here £ = 0.3 m). Note that the lane formation phenomenon disappears
when a noise is introduced in the model (freezing by heating phenomenon, see [13]
and in figure 3, thin dotted line in bottom right panel where a Brownian noise with
standard deviation o = 0.1 m/s is added to the model — the lane formation breaks
as soon as p > 2 ped/m?).
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Fig. 3 Counter flows. Left panels, snapshots of the system at time r = 0, 10 and 20 s from random
initial conditions (p = 2 ped/m?). Right panels, the mean flow sequence to the desired direction
and the fundamental diagram.

3.2 Intermittent bottleneck flows

Oscillating phenomena for counter flows in bottlenecks are observed with both real
data and models ([15, 12, 7]). Such phenomena are related as intermittent bottle-
neck flows in the literature [14]. We observe that the speed-based model is able to
reproduce them (see figure 4, left and top right panels). The phenomenon occurs
even at relatively high density levels (see figure 4, bottom right panel). Yet it in-
duces frictions and the flow volumes obtained for counter flows are less than the
ones of uni-direction. As expected, the frictions tend to increase as the density in-
creases. Some simulation results not presented here show that the intermittent flow
phenomenon subsists for high density levels when D is sufficiently high and that the
frequency of the flows oscillations tend to increase as the density increases.

4 Conclusion and working perspective

A new speed-based model is proposed for pedestrian dynamics in two dimensions.
Oppositely to classical force-based approaches, the model is intrinsically collision-
free and no overlapping phenomena occur, for any density level. The model has
five parameters. Three of them concern the optimal speed function. They are the
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Fig. 4 Counter flows with bottleneck. Left panels, snapshots of the system at time r =0, 10 and 20 s
from random initial conditions (p = 1.4 ped/m? and @ = 0.6 m). Right panels, the corresponding
flow sequences by direction and the fundamental diagram.

pedestrian length, desired speed and time gap with the predecessor. The two others
calibrate the direction model. They are the repulsion rate and repulsion distance.

The model main properties are described by simulation. A large range of dy-
namics observed in real data and force-based models are reproduced. For instance,
linear increase of flow with the bottleneck width, lane formation for counter flows
(with the freezing by heating effect) or intermittent flows, are obtained with iden-
tical setting of the parameters. However, other well-known characteristic such that
stop-and-go phenomena can not be described. Further mechanisms (and parameters)
remain to be introduced to the model.
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