000281631 001__ 281631
000281631 005__ 20210131030517.0
000281631 020__ $$a9783319120843
000281631 020__ $$a978-3-319-12083-6
000281631 0247_ $$2doi$$a10.1007/978-3-319-12084-3
000281631 0247_ $$2GVK$$aGVK:79948850X
000281631 0247_ $$2WOS$$aWOS:000345024600016
000281631 0247_ $$2altmetric$$aaltmetric:15863282
000281631 037__ $$aFZJ-2016-01320
000281631 041__ $$aEnglish
000281631 082__ $$a004.0151
000281631 1001_ $$0P:(DE-Juel1)132179$$aLippert, Thomas$$b0$$eCorresponding author$$ufzj
000281631 1112_ $$aBrain-Inspired Computing, International Workshop, BrainComp 2013$$cCetraro$$d2013-07-08 - 2013-07-11$$gBrainComp 2013$$wItaly
000281631 245__ $$aSupercomputing Infrastructure for Simulations of the Human Brain
000281631 260__ $$aCham [u.a.]$$bSpringer$$c2014
000281631 29510 $$aBrain-inspired computing : international workshop, BrainComp 2013, Cetraro, Italy, July 8 - 11, 2013 ; revised selected papers / Grandinetti, Lucio ; Lippert, Thomas ; Petkov, Nicolai , Cham [u.a.] : Springer, 2014,
000281631 300__ $$a198 - 212
000281631 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$mcontrib
000281631 3367_ $$2ORCID$$aBOOK_CHAPTER
000281631 3367_ $$07$$2EndNote$$aBook Section
000281631 3367_ $$2DRIVER$$abookPart
000281631 3367_ $$2BibTeX$$aINBOOK
000281631 3367_ $$2DataCite$$aOutput Types/Book chapter
000281631 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$bcontb$$mcontb$$s1563262936_1091
000281631 4900_ $$aLecture notes in computer science$$v8603
000281631 520__ $$aDecoding the human brain is considered as one of the greatest challenges faced by 21st century science. Advancing brain research by simulating the full human brain promises to provide profound insights into its complex functionality and into what makes us human. These insights will help to understand brain diseases and to develop novel treatments.Modern high performance computing technology not only allows to bring these goals into focus, it might itself be transformed profoundly being guided towards the exascale and beyond. On the one hand, information and communication technology (ICT) provides us with a completely new understanding of the brain and its diseases. On the other hand, this understanding of the brain will lead inevitably to brain inspired, radical innovation in computing. In particular, the Human Brain Project, one of the two EU Flagship research projects, will require data-intensive HPC at an extreme scale and fully interactive visualization and steering capabilities. Eventually, revolutionary new computing technologies, so-called neuromorphic devices, are expected to become reality.The following contribution outlines the plans for the HBP’s High Performance Computing (HPC) platform. A central brain simulation system at Jülich Research Centre, Germany, is planned to be operated as a user facility. It will provide the optimized hardware-software environment running a full virtual human brain model. Neuroscientists will be enabled to carry out in-silico experiments based on this model. The platform will be complemented by a software development system at CSCS in Lugano, Switzerland, and a third system will be running efficient molecular-level simulations at BSC in Barcelona, Spain. Finally, a system adapted to support massive data analytics will be hosted at CINECA in Bologna, Italy. During the ramp-up phase of the project (2013-2916), the HBP will link with PRACE institutions that have expressed their interest in adding in-kind support to the Platform and will try to motivate PRACE to establish programmatic access to PRACE systems, in order to allow peer-reviewed usage of the entire European Tier-0 capability.
000281631 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000281631 536__ $$0G:(EU-Grant)604102$$aHBP - The Human Brain Project (604102)$$c604102$$fFP7-ICT-2013-FET-F$$x1
000281631 536__ $$0G:(DE-Juel1)HGF-SMHB-2013-2017$$aSMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)$$cHGF-SMHB-2013-2017$$fSMHB$$x2
000281631 536__ $$0G:(DE-Juel1)Helmholtz-SLNS$$aSLNS - SimLab Neuroscience (Helmholtz-SLNS)$$cHelmholtz-SLNS$$x3
000281631 588__ $$aDataset connected to GVK
000281631 7001_ $$0P:(DE-Juel1)132215$$aOrth, Boris$$b1$$ufzj
000281631 773__ $$a10.1007/978-3-319-12084-3
000281631 909CO $$ooai:juser.fz-juelich.de:281631$$pec_fundedresources$$pVDB$$popenaire
000281631 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132179$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000281631 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132215$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000281631 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000281631 9141_ $$y2015
000281631 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000281631 920__ $$lyes
000281631 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000281631 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000281631 980__ $$acontb
000281631 980__ $$aVDB
000281631 980__ $$acontrib
000281631 980__ $$aI:(DE-Juel1)JSC-20090406
000281631 980__ $$aI:(DE-82)080012_20140620
000281631 980__ $$aUNRESTRICTED