000281683 001__ 281683
000281683 005__ 20220930130057.0
000281683 0247_ $$2doi$$a10.1371/journal.pone.0117205
000281683 0247_ $$2Handle$$a2128/9800
000281683 0247_ $$2WOS$$aWOS:000350168700030
000281683 0247_ $$2altmetric$$aaltmetric:3733778
000281683 0247_ $$2pmid$$apmid:25714553
000281683 037__ $$aFZJ-2016-01371
000281683 041__ $$aEnglish
000281683 082__ $$a500
000281683 1001_ $$0P:(DE-Juel1)131880$$aPopovych, Oleksandr$$b0$$eCorresponding author$$ufzj
000281683 245__ $$aThe Spacing Principle for Unlearning Abnormal Neuronal Synchrony
000281683 260__ $$aLawrence, Kan.$$bPLoS$$c2015
000281683 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1454314340_19496
000281683 3367_ $$2DataCite$$aOutput Types/Journal article
000281683 3367_ $$00$$2EndNote$$aJournal Article
000281683 3367_ $$2BibTeX$$aARTICLE
000281683 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000281683 3367_ $$2DRIVER$$aarticle
000281683 520__ $$aDesynchronizing stimulation techniques were developed to specifically counteract abnormal neuronal synchronization relevant to several neurological and psychiatric disorders. The goal of our approach is to achieve an anti-kindling, where the affected neural networks unlearn abnormal synaptic connectivity and, hence, abnormal neuronal synchrony, by means of desynchronizing stimulation, in particular, Coordinated Reset (CR) stimulation. As known from neuroscience, psychology and education, learning effects can be enhanced by means of the spacing principle, i.e. by delivering repeated stimuli spaced by pauses as opposed to delivering a massed stimulus (in a single long stimulation session). To illustrate that the spacing principle may boost the anti-kindling effect of CR neuromodulation, in this computational study we carry this approach to extremes. To this end, we deliver spaced CR neuromodulation at particularly weak intensities which render permanently delivered CR neuromodulation ineffective. Intriguingly, spaced CR neuromodulation at these particularly weak intensities effectively induces an anti-kindling. In fact, the spacing principle enables the neuronal population to successively hop from one attractor to another one, finally approaching attractors characterized by down-regulated synaptic connectivity and synchrony. Our computational results might open up novel opportunities to effectively induce sustained desynchronization at particularly weak stimulation intensities, thereby avoiding side effects, e.g., in the case of deep brain stimulation.
000281683 536__ $$0G:(DE-HGF)POF2-89574$$a89574 - Theory, modelling and simulation (POF2-89574)$$cPOF2-89574$$fPOF II T$$x0
000281683 588__ $$aDataset connected to CrossRef
000281683 7001_ $$0P:(DE-Juel1)136843$$aXenakis, Markos$$b1
000281683 7001_ $$0P:(DE-Juel1)131884$$aTass, Peter A.$$b2$$ufzj
000281683 773__ $$0PERI:(DE-600)2267670-3$$a10.1371/journal.pone.0117205$$gVol. 10, no. 2, p. e0117205 -$$n2$$pe0117205 -$$tPLoS one$$v10$$x1932-6203$$y2015
000281683 8564_ $$uhttps://juser.fz-juelich.de/record/281683/files/journal.pone.0117205.pdf$$yOpenAccess
000281683 8564_ $$uhttps://juser.fz-juelich.de/record/281683/files/journal.pone.0117205.gif?subformat=icon$$xicon$$yOpenAccess
000281683 8564_ $$uhttps://juser.fz-juelich.de/record/281683/files/journal.pone.0117205.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000281683 8564_ $$uhttps://juser.fz-juelich.de/record/281683/files/journal.pone.0117205.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000281683 8564_ $$uhttps://juser.fz-juelich.de/record/281683/files/journal.pone.0117205.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000281683 8564_ $$uhttps://juser.fz-juelich.de/record/281683/files/journal.pone.0117205.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000281683 8767_ $$92016-10-24$$d2016-10-24$$eOther$$jZahlung erfolgt$$lKK: Mittermaier$$zAbstract service/Digest
000281683 8767_ $$92015-01-01$$d2015-02-09$$eAPC$$jDeposit$$lDeposit: PLoS$$zPLOS HGF-Deposit ; PONE-D-14-49650, 1350USD
000281683 909CO $$ooai:juser.fz-juelich.de:281683$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000281683 9141_ $$y2015
000281683 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000281683 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000281683 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000281683 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000281683 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLOS ONE : 2014
000281683 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000281683 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000281683 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000281683 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000281683 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000281683 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000281683 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000281683 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000281683 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131880$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000281683 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000281683 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131884$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000281683 9131_ $$0G:(DE-HGF)POF2-89574$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vTheory, modelling and simulation$$x0
000281683 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000281683 980__ $$ajournal
000281683 980__ $$aVDB
000281683 980__ $$aUNRESTRICTED
000281683 980__ $$aI:(DE-Juel1)INM-7-20090406
000281683 9801_ $$aUNRESTRICTED
000281683 9801_ $$aFullTexts
000281683 980__ $$aAPC