000281689 001__ 281689
000281689 005__ 20210129221816.0
000281689 0247_ $$2doi$$a10.3389/fneur.2015.00029
000281689 0247_ $$2Handle$$a2128/9801
000281689 0247_ $$2WOS$$aWOS:000363758800001
000281689 0247_ $$2altmetric$$aaltmetric:3707336
000281689 0247_ $$2pmid$$apmid:25741316
000281689 037__ $$aFZJ-2016-01377
000281689 041__ $$aEnglish
000281689 082__ $$a610
000281689 1001_ $$0P:(DE-HGF)0$$aEggermont, Jos J.$$b0$$eCorresponding author
000281689 245__ $$aMaladaptive Neural Synchrony in Tinnitus: Origin and Restoration
000281689 260__ $$bFrontiers Research Foundation$$c2015
000281689 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1454314494_19490
000281689 3367_ $$2DataCite$$aOutput Types/Journal article
000281689 3367_ $$00$$2EndNote$$aJournal Article
000281689 3367_ $$2BibTeX$$aARTICLE
000281689 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000281689 3367_ $$2DRIVER$$aarticle
000281689 520__ $$aTinnitus is the conscious perception of sound heard in the absence of physical sound sources external or internal to the body, reflected in aberrant neural synchrony of spontaneous or resting-state brain activity. Neural synchrony is generated by the nearly simultaneous firing of individual neurons, of the synchronization of membrane-potential changes in local neural groups as reflected in the local field potentials, resulting in the presence of oscillatory brain waves in the EEG. Noise-induced hearing loss, often resulting in tinnitus, causes a reorganization of the tonotopic map in auditory cortex and increased spontaneous firing rates and neural synchrony. Spontaneous brain rhythms rely on neural synchrony. Abnormal neural synchrony in tinnitus appears to be confined to specific frequency bands of brain rhythms. Increases in delta-band activity are generated by deafferented/deprived neuronal networks resulting from hearing loss. Coordinated reset (CR) stimulation was developed in order to specifically counteract such abnormal neuronal synchrony by desynchronization. The goal of acoustic CR neuromodulation is to desynchronize tinnitus-related abnormal delta-band oscillations. CR neuromodulation does not require permanent stimulus delivery in order to achieve long-lasting desynchronization or even a full-blown anti-kindling but may have cumulative effects, i.e., the effect of different CR epochs separated by pauses may accumulate. Unlike other approaches, acoustic CR neuromodulation does not intend to reduce tinnitus-related neuronal activity by employing lateral inhibition. The potential efficacy of acoustic CR modulation was shown in a clinical proof of concept trial, where effects achieved in 12 weeks of treatment delivered 4-6 h/day persisted through a preplanned 4-week therapy pause and showed sustained long-term effects after 10 months of therapy, leading to 75% responders.
000281689 536__ $$0G:(DE-HGF)POF2-89573$$a89573 - Neuroimaging (POF2-89573)$$cPOF2-89573$$fPOF II T$$x0
000281689 588__ $$aDataset connected to CrossRef
000281689 7001_ $$0P:(DE-Juel1)131884$$aTass, Peter A.$$b1$$ufzj
000281689 773__ $$0PERI:(DE-600)2564214-5$$a10.3389/fneur.2015.00029$$gVol. 6$$p29$$tFrontiers in neurology$$v6$$x1664-2295$$y2015
000281689 8564_ $$uhttps://juser.fz-juelich.de/record/281689/files/fneur-06-00029.pdf$$yOpenAccess
000281689 8564_ $$uhttps://juser.fz-juelich.de/record/281689/files/fneur-06-00029.gif?subformat=icon$$xicon$$yOpenAccess
000281689 8564_ $$uhttps://juser.fz-juelich.de/record/281689/files/fneur-06-00029.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000281689 8564_ $$uhttps://juser.fz-juelich.de/record/281689/files/fneur-06-00029.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000281689 8564_ $$uhttps://juser.fz-juelich.de/record/281689/files/fneur-06-00029.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000281689 8564_ $$uhttps://juser.fz-juelich.de/record/281689/files/fneur-06-00029.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000281689 909CO $$ooai:juser.fz-juelich.de:281689$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000281689 9141_ $$y2015
000281689 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000281689 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000281689 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000281689 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000281689 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000281689 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131884$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000281689 9131_ $$0G:(DE-HGF)POF2-89573$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vNeuroimaging$$x0
000281689 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000281689 980__ $$ajournal
000281689 980__ $$aVDB
000281689 980__ $$aUNRESTRICTED
000281689 980__ $$aI:(DE-Juel1)INM-7-20090406
000281689 9801_ $$aUNRESTRICTED
000281689 9801_ $$aFullTexts