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Several brain disorders are characterized by abnormally strong neuronal synchrony.

Coordinated Reset (CR) stimulation was developed to selectively counteract abnormal

neuronal synchrony by desynchronization. For this, phase resetting stimuli are delivered

to different subpopulations in a timely coordinated way. In neural networks with spike

timing-dependent plasticity CR stimulation may eventually lead to an anti-kindling,

i.e., an unlearning of abnormal synaptic connectivity and abnormal synchrony. The

spatiotemporal sequence by which all stimulation sites are stimulated exactly once is

called the stimulation site sequence, or briefly sequence. So far, in simulations, pre-clinical

and clinical applications CR was applied either with fixed sequences or rapidly varying

sequences (RVS). In this computational study we show that appropriate repetition of

the sequence with occasional random switching to the next sequence may significantly

improve the anti-kindling effect of CR. To this end, a sequence is applied many times

before randomly switching to the next sequence. This new method is called SVS

CR stimulation, i.e., CR with slowly varying sequences. In a neuronal network with

strong short-range excitatory and weak long-range inhibitory dynamic couplings SVS

CR stimulation turns out to be superior to CR stimulation with fixed sequences or RVS.

Keywords: coordinated reset, slowly varying sequences, desynchronization, spike timing-dependent plasticity,

anti-kindling

Introduction

Abnormally strong neuronal synchronization characterizes several brain disorders, e.g., Parkin-
son’s disease (Lenz et al., 1994; Nini et al., 1995; Hammond et al., 2007), epilepsy
(Wong et al., 1986; Schomer and Lopes da Silva, 2010), and tinnitus (Ochi and Eggermont, 1997;
Llinas et al., 1999; Weisz et al., 2005; Eggermont and Tass, 2015). Coordinated reset (CR)
stimulation (Tass, 2003a,b) was developed in order to specifically counteract abnormal neu-
ronal synchrony by desynchronization (Tass, 1999). CR stimulation means to deliver phase
resetting stimuli at different times to different sub-populations involved in abnormal neu-
ronal synchronization (Tass, 2003a,b). Computational studies showed that in neuronal popu-
lations with spike timing-dependent plasticity (STDP) (Gerstner et al., 1996; Markram et al.,
1997; Bi and Poo, 1998; Feldman, 2000) CR stimulation has long-lasting, sustained effects (Tass
and Majtanik, 2006; Hauptmann and Tass, 2007; Popovych and Tass, 2012). This is because
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CR stimulation employs the multistability of neuronal networks
with STDP (Tass and Majtanik, 2006; Hauptmann and Tass,
2007; Maistrenko et al., 2007; Popovych and Tass, 2012). CR-
stimulation causes a desynchronization and in turn, due to STDP
(Gerstner et al., 1996; Markram et al., 1997; Bi and Poo, 1998;
Feldman, 2000), leads to a decrease of the mean synaptic weight.
In this way, CR stimulation shifts the neuronal network from a
pathological attractor with up-regulated synchrony and connec-
tivity to a physiological attractor with down-regulated synchrony
and connectivity (Tass andMajtanik, 2006; Hauptmann and Tass,
2007; Popovych and Tass, 2012). In this way CR applied induces
an unlearning of the abnormal synaptic connectivity and abnor-
mal neuronal synchrony, so that an anti-kindling is achieved
(Tass and Majtanik, 2006).

Computational studies showed that anti-kindling can robustly
be achieved in networks of spiking or bursting model neurons
where the neurons interact via plastic excitatory and inhibitory
synapses (Popovych and Tass, 2012; Tass and Popovych, 2012).
These studies show also that anti-kindling occurs irrespective of
whether CR stimulation is delivered to the somata or to excitatory
or inhibitory synapses.

In accordance with these computational findings, long-lasting
CR-induced desynchronization was achieved in pre-clinical as
well as clinical studies with invasive and non-invasive stimulation
modalities. Electrical CR stimulation induced long-lasting desyn-
chronization in rat hippocampal slice rendered epileptic by mag-
nesium withdrawal (Tass et al., 2009). Therapeutic long-lasting
after-effects of electrical CR deep brain stimulationwere observed
in parkinsonian non-human primates (Tass et al., 2012b). Uni-
lateral CR stimulation applied to the subthalamic nucleus (STN)
of parkinsonian MPTP monkeys for only 2 h per day during 5
subsequent days caused significant sustained bilateral therapeu-
tic after-effects for at least 30 days, while no after-effects were
induced by standard permanent high-frequency deep brain stim-
ulation (Tass et al., 2012b). By the same token, lasting after-
effects of electrical CR stimulation of the STN were also verified
in parkinsonian patients (Adamchic et al., 2014a). So far, non-
invasive CR stimulation was realized with acoustic stimuli and
applied to the treatment of chronic subjective tinnitus (Tass and
Popovych, 2012; Tass et al., 2012a). In a proof of concept-study it
was shown that acoustic CR stimulation causes a statistically and
clinically significant and sustained reduction of tinnitus symp-
toms (Adamchic et al., 2012a,b; Tass et al., 2012a) along with a
concomitant reduction of abnormal neuronal synchrony (Tass
et al., 2012a; Adamchic et al., 2014b), abnormal effective connec-
tivity (Silchenko et al., 2013) and abnormal cross-frequency cou-
pling (Adamchic et al., 2014c) within a tinnitus-related network
of brain areas.

We here set out to further improve the efficacy of CR stimu-
lation by focusing on a key element of CR, the stimulation site
sequence, i.e., the temporal sequence of activating the different
stimulation sites exactly once, which in what follows will briefly
be called sequence.Keeping the sequence constant for all stimula-
tion cycles is optimal in neuronal networks without STDP, since
it enables optimal desynchronization at minimal intensities (Tass,
2003a,b). The situation gets more sophisticated in the presence of
STDP. In a network of phase oscillators with couplings subject to

STDP the sequence was randomly varied from cycle to cycle in
order to avoid reverberations which might possibly lead to the
formation of sequence-related neuronal subclusters and/or to a
delayed anti-kindling (Tass andMajtanik, 2006). However, in sev-
eral computational studies addressing different aspects of CR a
robust anti-kindling was achieved with CR stimulation with fixed
sequence (Hauptmann and Tass, 2007, 2009; Tass and Haupt-
mann, 2007, 2009) as well as with sequences randomly varying
form cycle to cycle (Tass and Majtanik, 2006; Tass and Haupt-
mann, 2006; Popovych and Tass, 2012; Tass and Popovych, 2012;
Ebert et al., 2014). We denote CR stimulation with sequences
randomly varied from cycle to cycle as RVS CR stimulation, i.e.,
CR with rapidly varying sequences, whereas CR stimulation with
fixed sequence is called FS CR stimulation, i.e., CR stimulation
with fixed sequence. Although some findings indicated that RVS
CR might lead to a quicker anti-kindling (Tass and Majtanik,
2006), so far no systematic comparison or deeper analysis was
performed. In pre-clinical and clinical studies mainly RVS CR
stimulation was applied (Tass et al., 2012a,b; Adamchic et al.,
2014c), while FS CR stimulation was used only in an in vitro
experiment (Tass et al., 2009). The available results do not allow to
judge whether RVS CR or FS CR stimulation or possibly another
variant of CR might be superior.

In this study we investigate the efficacy of a new CR stimula-
tion variant for which a sequence is repeated during n stimulation
cycles in a row before randomly switching to the next sequence.
This type of CR will be called SVS-n CR stimulation, where SVS
stands for slowly varying sequences.We show that repetition with
occasionally switching of the sequence may significantly improve
the performance of CR stimulation, leading to a more robust and
quicker anti-kindling. To this end, we use a neuronal network
model with STDP as described in Section Materials and Meth-
ods. The impact of the RVS and the SVS-n CR stimulation are
compared in Section Slowly Varying Sequences Boost CR Stim-
ulation Effect. Finally, in Section Optimal Number of Different
Sequences Used for SVS CR Stimulation we demonstrate that
optimal anti-kindling requires both variation and substantial rep-
etition of the sequence. In fact, a sequence has to be repeated suf-
ficiently often, e.g., at least 25 times, before randomly switching
to another sequence.

Materials and Methods

Conductance-Based Hodgkin-Huxley Model
The neural network used in this study consisted of N (N = 200)
spiking conductance-based Hodgkin-Huxley neurons (Hodgkin
and Huxley, 1952). The membrane potential V of each neuron i
(i = 1, . . . , N) is characterized by Hansel et al. (1993), Popovych
and Tass (2012):

C
dV i

dt
= Ii − gNam

3
i hi (Vi − VNa) − gKn

4
i (Vi − VK)

− gl (Vi − Vl) + Si + Fi. (1)

C is the membrane capacitance, Ii the constant depolarizing cur-
rent injected into neuron i, Si is the current that represents synap-
tic input of the neurons within the network to neuron i and Fi is
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the current induced in neuron i by CR stimulation. Values used
in this study are: C = 1µF/cm2, maximum conductance per unit
area for the sodium, potassium and leak currents, gNa = 120
mS/cm2, gK = 36 mS/cm2, gl = 0.3 mS/cm2, with sodium
reversal potential VNa = 50mV, potassium reversal potential
VK = −77mV, leak reversal potential Vl = −54.4mV. For
the equations of the time-varying gate variables m, h, and n see
Hansel et al. (1993). The injected constant currents (Ii) are uni-
formly distributed random numbers (Ii ∈ [I0 − εI, I0 + εI], in
this study I0 = 11.0 µA/cm2 and εI = 0.45 µA/cm2) and
determine the intrinsic firing rate of the uncoupled neurons.

The coupling term Si from Equation (1) (Popovych and Tass,
2012) contains a weighted ensemble average of all post-synaptic
currents received by neuron i from the other neurons in the
network and is given by:

Si = N−1
N

∑

j=1

(

Vr,j − Vi

)

cij
∣

∣Mij

∣

∣ sj. (2)

N is the number of neurons within the ensemble,Vr,j is the rever-
sal potential of the synaptic coupling (20mV for excitatory and –
40mV for inhibitory coupling), and cij is the synaptic coupling
strength from neuron j to neuron i. There are no neuronal self-
connections within the network (cii = 0 mS/cm2). Mij has the
form of a Mexican hat (Wilson and Cowan, 1973; Dominguez
et al., 2006; De la Rocha et al., 2008) and defines the strength
and type of neuronal interaction: strong short-range excitatory
(

Mij > 0
)

and weak long-range inhibitory interactions
(

Mij < 0
)

.
This spatial profile of coupling between neurons i and j is given
by:

Mij =

(

1− d2ij/σ
2
1

)

exp
(

−d2ij/(2σ
2
2 )

)

(3)

where dij = d
∣

∣i− j
∣

∣ is the distance between neurons i and j,

d = d0/(N − 1) (4)

is the lattice distance between two neighboring neurons within
the ensemble, d0 is the length of the neuronal chain, σ1 = 3.5,
and σ2 = 2.0 as used in Popovych and Tass (2012). To mini-
mize boundary effects, the neurons form a ring, which implies
that dij = d ·min

(∣

∣i− j
∣

∣ ,N −
∣

∣i− j
∣

∣

)

.
The synaptic variable sj in Eqn. 2 is given by:

dsj

dt
=

0.5(1− sj)

1+ exp
[

−
(

Vj − 5
)

/12
] − 2sj. (5)

Spike Timing-Dependent Plasticity
In general, synaptic coupling strengths change depending on the
precise timing of pre- and post-synaptic spikes (Markram et al.,
1997; Bi and Poo, 1998). In the present study all synaptic weights
cij were considered to be dynamic variables dependent on the
time difference (1tij) between the onset of the post- and pre-
synaptic spikes ti, respectively tj

(

1tij = ti − tj
)

. According to the

spike timing-dependent plasticity (STDP) rule (Bi and Poo, 1998)
the change in synaptic weight is given by:

1cij =







β1e
−1tij
γ1τ ,1tij ≥ 0

β2
1tij
τ
e

1tij
γ2τ ,1tij < 0

(6)

See Popovych and Tass (2012), In ourmodel we update the synap-
tic weights cij in an event-based manner by adding δ · 1cij for
excitatory connections and −δ · 1cij for inhibitory connections
with learning rate δ > 0 every time a neuron spikes. To avoid
an unbounded strengthening or weakening, the synaptic weights
are restricted to the interval cij ∈ [0, 1] mS/cm2 for excitatory
synapses and cij ∈ [0, cmax] mS/cm2 for inhibitory synapses with
cmax = 1 unless stated otherwise. In this study the following
values are used for the STDP parameters: β1 = 1, β2 = 16,
γ1 = 0.12, γ2 = 0.15, τ = 14 ms, and δ = 0.002.

Due to STDP and the different intrinsic periods of the neu-
rons, the synaptic weights change constantly. In this study the
dynamics of the synaptic weights were investigated on a pop-
ulation level. The strength of the coupling within the neuronal
population at time t is given by the synaptic weight averaged over
the population:

Cav (t) = N−2
∑

i,j

sgn
(

Mij

)

cij (t) , (7)

with Mij as defined in Equation (3) and the sign-function sgn.
The amount of synchronization of the neuronal activity within
the ensemble is influenced by the synaptic weights and can be
represented by the order parameter (Haken, 1983; Kuramoto,
1984)

R (t) =

∣

∣

∣

∣

∣

∣

N−1
∑

j

eiϕj(t)

∣

∣

∣

∣

∣

∣

, (8)

Where ϕj (t) = 2π(t − tj,m)/(tj,m+1 − tj,m) for tj,m ≤ t < tj,m+1

is a linear approximation of the phase of neuron j between its
mth and (m + 1)th spikes at spiking times tj,m and tj,m+1. The
order parameter Rmeasures the extent of phase synchronization
in the neuronal ensemble and takes values between 0 (complete
desynchronization) and 1 (perfect in-phase synchronization). For
our data analysis the order parameter was averaged over the last
1.6 s of the CR-off period and will be denoted as average order
parameter Rav.

Coordinated Reset Stimulation Algorithms
Coordinated Reset (CR) stimulation was delivered to the neu-
ronal ensemble of N spiking Hodgkin-Huxley neurons. This
was done sequentially via Ns equidistantly spaced stimulation
sites (Tass, 2003a): one stimulation site was active during Ts/Ns,
while the other stimulation sites were inactive during that period.
After that another stimulation site was active during the next
Ts/Ns period. All Ns stimulation sites were stimulated exactly
once within one stimulation ON-cycle. Therefore, the dura-
tion of each ON-cycle is Ts. This spatiotemporal activation
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of stimulation sites is represented by the indicator functions
ρk (t) (kǫ {1, . . . ,N}):

ρk (t) =

{

1, kthstimulation site is active at t

0, otherwise
(9)

The stimulation signals induced single brief excitatory post-
synaptic currents. The evoked time-dependent normalized con-
ductances of the post-synaptic membranes are represented by
α-functions given by Popovych and Tass (2012):

Gstim (t) =
t − tk

τstim
e−(t−tk)/τ, tk ≤ t ≤ tk+1. (10)

Here τstim = Ts/(6Ns) denotes the time-to-peak of Gstim, and
tk is the onset of the kth activation of the stimulation site. The
spatial spread of the induced excitatory post-synaptic currents in
the network is defined by a quadratic spatial decay profile (see
Popovych and Tass, 2012 for motivation) given as a function of
the difference in index of neuron i and the index xk of the neuron
at stimulation site k:

D (i, xk) =
1

1+ d2(i− xk)2/σ
2
d

, (11)

with d the lattice distance between two neighboring neurons as
defined in Equation (4) and σd = 0.08d0 the spatial decay rate of
the stimulation current.

The stimulation current from Equation (1) is given by:

Fi = [Vr − Vi (t)] · K

Ns
∑

k= 1

D (i, xk) ρk (t)Gstim(t), (12)

where Vr = 20mV denotes the excitatory reverse potential, Vi

the membrane potential of neuron i, K the stimulation intensity,
and D, ρ, G are given by Equations (11), (10), and (9).

In this paper we study three different CR algorithms: RVS
CR stimulation (Tass and Hauptmann, 2006; Tass and Majtanik,
2006; Popovych and Tass, 2012; Tass and Popovych, 2012), FS CR
stimulation (Tass, 2003a,b; Hauptmann and Tass, 2007, 2009; Tass
and Hauptmann, 2007, 2009), and our novel SVS CR stimulation.
During one sequence each stimulation site is activated exactly
once. There are Ns ! (in our study 4!=24) different sequences
possible to stimulate Ns stimulation sites. In the RVS CR algo-
rithm for each ON-cycle a new sequence was drawn randomly
from the set of Ns ! possible sequences (see Figure 1A). For the
slowly varying sequences CR algorithm (SVS-n) the sequence
order is random and determined a priori in such a way that each
sequence used, is consecutively repeated n times before another
one is applied. For the SVS-4 CR stimulation signals as shown in
Figure 1B one sequence was applied during the first n consecu-
tive ON-cycles. After that the next sequence was applied during
the next n consecutive ON-cycles, and so on (see Figure 1B for
n = 4).

FIGURE 1 | Spatiotemporal stimulation signals of CR stimulation. (A)

An example sequence order for the rapidly varying sequences (RVS) CR. (B)

An example sequence order for the slowly varying sequence CR with every

sequence repeated 4 times (SVS-4) before the next sequence is used. A

change of color indicates a new sequence. Vertical dashed lines separate

stimulation ON- and OFF cycles: three ON-cycles are followed by two

OFF-cycles.

Simulation Details and Data Analysis
We ran simulations for different initial network conditions and
different sequence orders. For each initial network condition the
initial conditions of all N neurons were randomly drawn from
uniform distributions (ni,mi, hi, si ∈ [0, 1]; Vi ∈ [−65, 5]mV ;
Ii ∈ [I0 − σI, I0 + σI]). The initial synaptic weights cij between
the neurons were drawn from a normal distribution (cij∼ N(µ =

0.5µA/cm2, σ = 0.01µA/cm2)). After an initial equilibration
phase of 2 s, STDP was included for the rest of the simulation.
During the first 60 s with STDP the network was given the oppor-
tunity to rewire its connections without any influence from an
external stimulation. At the end of this STDP-only period the
network activity was highly synchronized and the CR simula-
tion was applied for 64 s from t = 0 s on. During this CR-on
period three stimulation ON-cycles alternated with two OFF-
cycles as in the example stimulation signal shown in Figure 1. No
stimulation was applied during the OFF-cycles. Each ON- and
OFF-cycle lasted Ts = 16 ms. After 64 s the CR stimulation was
stopped permanently and the 64 s lasting CR-off period started.
After going through this procedure for one particular stimula-
tion intensity, K, the procedure was repeated from t = 0 s on
for the other K-values (K ∈ {0.10, 0.20, 0.30 . . . , 0.60}). For
each CR stimulation this whole process was repeated for eleven
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different initial network conditions and sequence orders. Besides
the RVS CR stimulation also the SVS-100 CR stimulations were
applied for eleven different combinations of initial conditions
and sequence orders. Finally, the optimal number of different
sequences used in the SVS CR stimulation was explored.

The resulting values of Cav (Equation 7) at t = 128 s and Rav
(Equation 8) averaged over the last 1.6 s of the CR-off period)
were plotted in boxplots (Tukey, 1977). In order to compare
the results of different CR algorithms for a constant stimula-
tion strength, K, the obtained boxplots are plotted next to each
other, whereby the color represents which CR algorithm was
used. Statistical significances of differences between the results of
the different CR algorithms were determined by the one-sided
Mann-Whitney test.

Results

Slowly Varying Sequences Boost CR stimulation
Effect
To verify whether the SVS CR stimulation is more successful than
the RVS CR stimulation, the effect of both CR algorithms on the
average synaptic weight, Cav, as well as on the synchronization of
neuronal activity R has to be investigated. Each measure will be
explored first for the RVS and then for the SVS CR stimulation.

As visualized in Figure 2A the RVS CR stimulation causes a
weakening of the average synaptic weight Cav during the CR-on
period for all stimulation intensities K. At the end of the sub-
sequent CR-off period, the average synaptic weight is still much
weaker than before the CR stimulation was applied, except for the
weakest stimulation intensity. Figure 2B then shows how the SVS
CR stimulation, delivered to the same initial network, decreases
the average synaptic weights even more and causes in general
lower long-lasting Cav–values compared to the RVS CR stimula-
tion. Since we are interested in the long-lasting effects of the CR
stimulation period, we will concentrate on the values at the end
of the CR-off for the remainder of this work.

To investigate whether this observed improvement by the
SVS CR stimulation is just a coincidence, we have also changed
the sequence order or the initial network conditions. Figure 3A
shows that by applying another RVS order to the same initial net-
work or by applying the initial sequence order to a network with
different initial conditions, different long-lasting Cav-values were
obtained. Only for the weakest stimulation intensity, K = 0.10,
the RVS algorithm caused similar long-lasting Cav-values. For
other stimulation intensities, it suggests that the effect of the RVS
CR stimulation depends on the sequence order used and on the
initial network conditions. As follows from Figure 3B, the suc-
cess of the SVS-100 CR stimulation depends less strongly on the
exact sequence order and the initial network conditions and the
SVS-100 CR stimulation results in a smaller Cav-value than the
RVS CR stimulation, over a wide range of stimulation intensities
K continuing the superiority of this method.

Robustness against variations of the sequence order and
against initial network conditions is of crucial importance for
the CR therapy. Therefore, all stimulations were repeated 11
times for different combinations of initial network conditions

FIGURE 2 | Dynamics of the average synaptic weight, Cav , for different

stimulation intensities, K. (A) Results of the RVS CR stimulation. (B) Results

of the SVS-100 CR stimulation. The initial network is the same for all

simulations. The sequence order used for each CR method is constant for all

K-values. The CR-on period, represented by the red horizontal bar, starts at

t = 0 s and is switched off at t = 64 s (dashed vertical line). During the

subsequent 64 s CR-off period, no stimulation is delivered, and Cav evolves

spontaneously. cmax = 1 for all simulations.

and sequence orders. The boxplots in Figure 4A show that the
long-lasting effect of decreasing the average synaptic strength is
significantly better for the SVS-100 than for the RVS CR stimu-
lation over a wide range of stimulation intensities K (one-sided
Mann-Whitney test, p < 0.05). Besides generating a better Cav-
value, the SVS CR stimulation is also more robust against ini-
tial network conditions and sequence orders. The SVS-100 also
induces a significant smaller Rav than the RVS CR stimulation
(one-sided Mann-Whitney test p < 0.01), but for a smaller set
of K-values as shown in Figure 4B. Rav is the value of the order
parameter averaged over the last 1.6 s of the CR-off period.

To rule out false estimates of the time averaged order parame-
ter R, we used different window lengths. False estimates could, for
instance, be caused by low-frequency oscillations of R with peri-
ods exceeding the window length used for our averaging analysis.
In our analysis of the order parameter R, presented in this paper,
we averaged over the last 1.6 s of the 64 s during CR-off period.
Averaging R over a quarter (=16 s) of the total CR-off period gave
very similar results. Hence, we can consider our results to be suf-
ficiently robust with respect to variations of the length of the time
window used for our evaluation.

Simulations for SVS-25 CR stimulation during the 64 s lasting
CR-on period gave similar results for Cav and Rav as the SVS-100
CR (results not shown), illustrating that 25 consecutive repeti-
tions of each sequence are already enough to improve the CR
effect.

From the standpoint of clinical applications it is important
to understand the relationship between the acute effect achieved
during stimulation and the after-effect observed after cessation of
stimulation. To this end, we studied the relationship between the
values of Cav and Rav at the end of the CR-on period (t = 64
s) and their values at the end of the CR-off period (t = 128 s)
(Figure 5). The relation between Cav at t = 64 s and at t = 128 s
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FIGURE 3 | Effect of the sequence order and of the initial network

conditions on the average synaptic weight Cav at t = 128 s as a

function of stimulation intensity K. (A) Cav-values at t = 128 s

obtained by the RVS CR stimulation. (B) Cav-values at t = 128 s

obtained by the SVS-100 CR stimulation. The Cav (t = 128 s) values in

Figure 2 are the reference results and represented by the solid lines in

this Figure. The dashed-dotted lines show the result for a simulation

with the same initial network conditions as used to obtain the reference

results but for another randomly chosen sequence order. The dotted

lines represent the obtained Cav-values at t = 128 s for a simulation

with the same sequence order as used to obtain the reference results,

but for other initial network conditions.

FIGURE 4 | Comparison of the anti-kindling effects at t = 128 s for the

RVS and the SVS-100 CR stimulation. (A) Boxplots of the average synaptic

strength, Cav, at t = 128 s as a function of the stimulation intensity, K, for the

RVS and the SVS-100 CR stimulation. (B) Boxplots of the order parameter R

averaged over the last 1.6 s, Rav, as a function of K for the RVS and the

SVS-100 CR stimulation. The RVS CR results for the same K-values are

shown in red and slightly shifted to the left and the SVS-100 results are shown

in blue and slightly shifted to the right. The black lines within the boxes show

the medians for each condition, the boxes the middle 50% and the whiskers

below (above) the boxes the first (last, respectively) 25%. Outliers are defined

as 1.5 times the length of the box below or above the box and represented by

open circles. For each condition (K-value and type of CR) the simulations are

repeated eleven times for different initial conditions of the network in

combination with different sequence orders. One asterisk indicates a

significantly lower Cav - or Rav-value compared to the values obtained by the

RVS CR stimulation (one-sided Mann-Whitney test with p < 0.05).

is visualized in Figure 5A. In a first approximation, small values
Cav and Rav at t = 64 s are required but not necessarily sufficient
for small values of Cav and Rav at t = 128 s. Hence, with a

certain probability a pronounced acute stimulation effect is asso-
ciated with a good long-term outcome. In contrast, poor acute
stimulation effects are not related to pronounced after-effects.

Optimal Number of Different Sequences Used for
SVS CR Stimulation
In this section we analyze the impact of sequence changes on
the dynamics of the average synaptic connectivity as assessed by
Cav. To this end, first, we perform a CR stimulation with fixed
sequence (FS CR) and compare it to CR stimulation epochs where
the sequence is either changed once or at three equidistant times
without changing the total duration of the CR-on period. This
implies that the number of different sequences multiplied with
the number of consecutive repetitions, n, is constant. Finally,
the optimal number of different sequences used in the SVS CR
stimulation was explored.

We analyzed the effect of FS CR stimulation for eleven dif-
ferent initial network conditions in combination with a different
sequence for each network, respectively. Figure 6A clearly shows
that for the FS CR stimulation (SVS-2400) with K = 0.20, the
decrease of Cav strongly depends on which sequence is used.
Pronounced long-lasting effects are achieved by some sequences,
whereas no anti-kindling is observed for other sequences.
Increasing the stimulation intensity to K = 0.45 improves
the robustness of FS against the choice of the sequence used
and the initial network conditions (Figure 6B). For K = 0.45
the average synaptic weight stabilizes at a small to intermediate
value, depending on the sequence and the initial network condi-
tions. The stabilization of Cav is more rapidly achieved at higher
stimulation intensity K.

By using two different sequences instead of just one sequence,
the first sequencemay stabilizeCav at an intermediate value ofCav

and, hence, lead to a sub-optimal outcome. However, at t = 32
s the second sequence takes over, and may further reduce Cav as
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FIGURE 5 | Predictability of the anti-kindling effect by Cav at

t = 64 s. (A) Relation between Cav at the end of the CR-on period

(t = 64 s) and at the end of the CR-off period (t = 128 s). (B) Relation

between Cav at the end of the CR-on period (t = 64 s) and Rav at the

end of the CR-off period (t = 128 s). The Cav-values at t = 64 s are

calculated and plotted against Cav or Rav at t = 128 s for each

condition (initial network conditions, stimulation intensity, sequence order,

cmax = 1) as used for Figure 4. Red circles represent the results of the

RVS CR stimulation, blue circles of the SVS-100 CR stimulation. Note

that the red circles are plotted on top of the blue circles.

shown by its kinks at t = 32 s (Figure 6C for K = 0.20 and SVS-
1200), in particular, for the more effective stimulation intensity
K = 0.45 (Figure 6D).

By the same token, the long-lasting effects on the mean synap-
tic connectivity Cav and the robustness of the stimulation further
improve by using four different sequences (SVS-600, Figure 6E for
K = 0.20 and Figure 6F forK = 0.45). Again, especially at higher
stimulation intensity changes of the sequence may come with a
stepwise-like further reduction of Cav showing up as kinks in the
time course of Cav at times when sequences are changed (t = 16,
32, and 48 s).

Analogously, we further increase the number of different
sequences used during one CR epoch. Figure 7 shows the
stimulation outcome in terms of synaptic connectivity Cav

(Figures 7A,C) and order parameter Rav (Figures 7B,D) aver-
aged over the last 1.6 s of the CR-off period for different stimu-
lation intensities (K = 0.20 in Figures 7A,B and K = 0.45 in
Figures 7C,D). The statistics obtained from a set of eleven sim-
ulations performed for different initial network conditions and
sequence orders shows that the main part of the SVS-induced
improvement of the CR effect is already achieved with four differ-
ent sequences. Using more than four different sequences hardly
leads to a further reduction of Rav and Cav and their variability.

Discussion

Our results show that the SVS CR stimulation leads to signifi-
cantly weaker average synaptic weights than the RVS CR stim-
ulation over a wide range of stimulation. Within this range the
Inter-Quartile-Range (25th to 75th percentile) is smaller for the
SVS CR approach compared to the RVS CR. This implies that
the SVS CR approach is more robust against initial conditions of
the network and against the order of the sequences than the RVS
CR in this range. The differences between the results of the SVS
with 25 and 100 consecutive repetitions of each sequence are in

general not significant, although more repetitions tend to have a
larger impact on the average synaptic weight (results not shown).
A more significantly reduced average synaptic weight does not
necessarily translate into more significantly reduced overall syn-
chrony. In fact, for the SVS CR stimulation the network activity
was significantly more desynchronized than for the RVS CR stim-
ulation in a smaller range of stimulation intensities than for the
weakening of the network connectivity.

Optimal anti-kindling is obtained at intermediate stimula-
tion intensities (Figures 3, 4). This is in agreement with previous
computational studies (e.g., Lysyansky et al., 2011a; Popovych
and Tass, 2012; Ebert et al., 2014). On the one hand CR stim-
ulation has to be of sufficient intensity to achieve phase resets
of the different subpopulations, but on the other hand at high
intensities the subpopulations are no longer separately stimu-
lated. In the limiting case of very high intensities each stimu-
lus affects nearly the whole neuronal population and causes an
entrainment of the whole population which fosters synchroniza-
tion rather than desynchronization. Our results are stable with
respect to variations of model parameters, e.g., by doubling the
maximum allowed inhibitory synaptic weight (cmax = 2 for
inhibitory synapses, results not shown).

Our results show that optimal long-lasting desynchroniza-
tion requires the right combination of appropriate repetition
and occasional variation of sequences. In fact, SVS-CR stimu-
lation is better than FS CR stimulation over a wide range of
stimulation intensities. Furthermore, the optimal number of dif-
ferent sequences for the SVS CR stimulation is four or more.
This implies that repetition alone, like in the case of FS CR
simulation (Hauptmann and Tass, 2007, 2009; Tass and Haupt-
mann, 2007, 2009; Tass et al., 2009), is not the only ingredi-
ent for the improvement of CR stimulation. With insufficiently
many different sequences in the SVS CR approach, the network
can stabilize in a local minimum that is much larger than the
global minimum Cav-value for a given stimulation intensity. In
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FIGURE 6 | Effect of switching the sequence during CR

stimulation. In a series of simulations with different stimulation

intensities (K = 0.20 in left panels and K = 0.45 in right panels) the

sequence was either kept fixed [FS CR stimulation, (A,B)], randomly

varied just once [in the middle of the stimulation period, at t = 32 s,

(C,D)] or randomly varied at three equidistant times [at t = 16, 32,

48 s, (E,F)]. Simulations were performed for eleven different sequence

orders and initial network conditions. Each panel shows the dynamics

of Cav for each of the eleven simulations in a different color. FS CR

stimulation (A,B): Time course of Cav for eleven combinations of

different initial network conditions and different sequence for

SVS-2400, respectively, for K = 0.20 (A) and K = 0.45 (B). Change

of sequence in the middle of the stimulation epoch (C,D): Two

different sequences, each applied 1200 times in a row. Change of

sequence at t = 32 s, with K = 0.20 (C) and K = 0.45 (D).

Sequence is changed three times at equidistant times (t =, 16,32,

and 48 s) during the stimulation epoch (E,F): In each simulation four

different sequences are applied 600 times in a row, so that after

16 s the next sequence randomly chosen, with K = 0.20 (E) and

K = 0.45 (F). The red horizontal bars represent CR-on periods. The

vertical dashed-dotted lines indicate a change of sequence. cmax = 1

in all simulations.

case the sequence is replaced after many repetitions by another
sequence and again after a large number of repetitions by another
sequence, the network connectivity can stepwise decrease from
one local minimum to another, in this way, approaching the
global minimum for a given stimulation intensity. Using more
than four different sequences in the SVS CR stimulation does
not significantly improve the long-lasting anti-kindling effects
compared to those obtained with just four different sequences.

The different local minima correspond to different attractors of
the network (see Popovych et al., 2015). In fact, in our model net-
work a multitude of attractors with different amount of mean
synaptic weight and neuronal synchrony coexist, covering the
whole spectrum fromminimal mean connectivity and synchrony
up to strongly up-regulated mean connectivity and synchrony.
Hence, our results indicate that SVS CR stimulation prevents
the network from getting stuck in undesirable attractors (with
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FIGURE 7 | Comparison of the anti-kindling effects for some numbers

of different sequences applied during the SVS CR stimulation. (A)

Boxplots of Cav at t = 128 s for different numbers of sequence changes used

in the SVS CR stimulation with K = 0.20. (B) Boxplots of Rav at t = 128 s for

some numbers of different sequences used in the SVS CR stimulation with

K = 0.20. (C) As in (A) for K = 0.45. (D) As in (B) for K = 0.45. The black lines

within the boxes show the medians for each condition, the boxes the middle

50% and the whiskers below (above) the boxes the first (last, respectively)

25%. Outliers are defined as 1.5 times the length of the box below or above

the box and represented by open circles. For each condition (K-value and

number of sequences) the simulations are repeated eleven times for different

initial conditions of the network in combination with different sequence(s). The

number of consecutive sequence repetitions was adjusted with respect to the

number of different sequences so that the duration of the CR-on period is

always 64 s for each simulation. For example if two different sequences are

used, each of them is repeated 1200 times in a row, in case four different

sequences are used, each of them is repeated 600 times.

intermediate mean connectivity and synchrony) in the course of
the anti-kindling stimulation.

Another difference between the SVS-100 and the RVS CR
stimulation is that for the SVS CR stimulation by definition in
a suitably large time window each sequence is repeated exactly
100 times, but that for the RVS CR stimulation the number of

(timely separated) repetitions of each sequence can vary within
such a time window, since by definition the sequence of the RVS
CR changes from ON-cycle to ON-cycle, where each sequence
occurs with equal probability. For an infinitely long time win-
dow also for the RVS CR stimulation the different sequences will
occur with equal probability. However, on the time scale of one
completed series of sequences of the SVS-100 CR stimulation, i.e.,
for larger, but not infinitely large numbers of sequences, this may
be different. Taking a permutation of all 2400 applied sequences
(including the repeated sequences) of a SVS-100 CR stimula-
tion generates a CR stimulation signal in which the different
sequences occur randomly, but each still exactly 100 times. Simu-
lations with this permutated CR stimulation signal show that Cav

and Rav-values are similar to those obtained by the RVS CR stim-
ulation although the spread is in general larger for the permutated
than the random signal (results now shown). This suggests that a
constant frequency with which each sequence occurs in a wider
time window does not contribute to the success of the SVS CR
stimulation, but that it is mainly determined by the consecutive
repetitions of a sequence and the number of different sequences.
This is actually supported by the fact that already four different
sequences in the SVS CR stimulation are sufficient to induce a
full-blown anti-kindling (see above).

Applying our SVS CR approach to DBS may be particularly

rewarding, since with the same stimulation intensity as used for

RVS CR or fixed sequence CR, SVS CR might lead to a bet-
ter therapeutic outcome. Reducing the stimulation energy will

likely lead to a reduction of the rate of side effects. RVS CR DBS
was successfully applied at stimulation amplitudes (of the sin-
gle stimulation pulses) similar to those of standard permanent
high-frequency DBS (Adamchic et al., 2014a) as well as corre-
sponding to a third of the amplitude used for standard permanent
high-frequency DBS (Tass et al., 2012a). Accordingly, within that
range of stimulation amplitudes SVS CR-DBS might be supe-
rior to RVS CR-DBS. However, given the intensity dependence of
the anti-kindling effects (e.g., Figure 4), systematic dose finding
studies for both types of CR-DBS are required to best exploit their
actual clinical potential. By the same token, systematic dose find-
ing studies should be conducted for acoustic CR stimulation for
the treatment of tinnitus (Tass et al., 2012b) for SVS CR. As yet,
acoustic RVS CR stimulation was delivered at only one stimula-
tion intensity (i.e., loudness level), namely for just super thresh-
old loudness. In the context of dose finding studies the results
from Figure 5might be important, since they show that—at least
in the model under study—acute effects (achieved during stimu-
lation) are necessary but not sufficient for pronounced long-term
desynchronization effects observed after cessation of stimulation.

In a previous computational study it was shown that FS CR
stimulation may augment brain function by counteracting cere-
bral hypo-activity without promoting pathological neuronal syn-
chrony (Lysyansky et al., 2011b). Accordingly, a forthcoming
study might focus on the comparison of the potential of SVS CR
for activating brain areas and protecting the brain from abnormal
synchrony and kindling as opposed to both FS CR and RVS CR.
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