000281712 001__ 281712
000281712 005__ 20210129221819.0
000281712 037__ $$aFZJ-2016-01400
000281712 041__ $$aEnglish
000281712 1001_ $$0P:(DE-HGF)0$$aLupascu, D. C.$$b0
000281712 1112_ $$aFrühjahrstagung der Deutschen Physikalischen Gesellschaft (DPG2015)$$cBerlin$$d2015-03-15 - 2015-03-20$$wGermany
000281712 245__ $$aThe magnetoelectric effect across scales
000281712 260__ $$c2015
000281712 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1454336215_19483
000281712 3367_ $$033$$2EndNote$$aConference Paper
000281712 3367_ $$2DataCite$$aOutput Types/Conference Poster
000281712 3367_ $$2DRIVER$$aconferenceObject
000281712 3367_ $$2ORCID$$aCONFERENCE_POSTER
000281712 3367_ $$2BibTeX$$aINPROCEEDINGS
000281712 520__ $$aMagnetoelectric coupling can arise in intrinsic multiferroics as well as composites. We will outline how for intrinsic BiFeO3 nanoparticles yield different magnetoelectric properties at room temperature than larger grains or bulk material. Magnetoelectric nanoscale composites of BaTiO3 and CoFe2O4 display rather poor magnetoelectric coupling macroscopically. Their micron scale counterparts on the other hand yield nice macroscopic response. The mechanical, electrical, and magnetic effects are analyzed using techniques including Mössbauer spectroscopy, magnetic force microscopy, piezoforce microscopy, and macroscopic techniques. It will be shown that microscopic coupling is strong also for (partly) conducting magnetic inclusions and nanosystems while macroscopic properties are highly dependent on good insulation of the samples. Experimental asymmetries in determining the magnetoelectric coupling coefficient are discussed. Support via FP7 Marie Curie Initial Training Network *Nanomotion* (grant n∘ 290158) & Forschergruppe 1509 are acknowledged.
000281712 536__ $$0G:(DE-HGF)POF3-522$$a522 - Controlling Spin-Based Phenomena (POF3-522)$$cPOF3-522$$fPOF III$$x0
000281712 7001_ $$0P:(DE-HGF)0$$aWende, H.$$b1
000281712 7001_ $$0P:(DE-HGF)0$$aSchröder, J.$$b2
000281712 7001_ $$0P:(DE-HGF)0$$aLabusch, M.$$b3
000281712 7001_ $$0P:(DE-HGF)0$$aEtier, M.$$b4
000281712 7001_ $$0P:(DE-HGF)0$$aNazrabi, A.$$b5
000281712 7001_ $$0P:(DE-HGF)0$$aAnusca, I.$$b6
000281712 7001_ $$0P:(DE-HGF)0$$aTrivedi, H.$$b7
000281712 7001_ $$0P:(DE-Juel1)161317$$aGao, Y.$$b8$$ufzj
000281712 7001_ $$0P:(DE-HGF)0$$aEscobar, M.$$b9
000281712 7001_ $$0P:(DE-HGF)0$$aShvartsman, V. V.$$b10
000281712 7001_ $$0P:(DE-HGF)0$$aLanders, J.$$b11
000281712 7001_ $$0P:(DE-HGF)0$$aSalamon, S.$$b12
000281712 7001_ $$0P:(DE-Juel1)162347$$aSchmitz-Antoniak, C.$$b13$$ufzj
000281712 909CO $$ooai:juser.fz-juelich.de:281712$$pVDB
000281712 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161317$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000281712 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162347$$aForschungszentrum Jülich GmbH$$b13$$kFZJ
000281712 9131_ $$0G:(DE-HGF)POF3-522$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000281712 9141_ $$y2015
000281712 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000281712 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x0
000281712 980__ $$aposter
000281712 980__ $$aVDB
000281712 980__ $$aUNRESTRICTED
000281712 980__ $$aI:(DE-Juel1)PGI-6-20110106