| 001 | 281712 | ||
| 005 | 20210129221819.0 | ||
| 037 | _ | _ | |a FZJ-2016-01400 |
| 041 | _ | _ | |a English |
| 100 | 1 | _ | |a Lupascu, D. C. |0 P:(DE-HGF)0 |b 0 |
| 111 | 2 | _ | |a Frühjahrstagung der Deutschen Physikalischen Gesellschaft (DPG2015) |c Berlin |d 2015-03-15 - 2015-03-20 |w Germany |
| 245 | _ | _ | |a The magnetoelectric effect across scales |
| 260 | _ | _ | |c 2015 |
| 336 | 7 | _ | |a Poster |b poster |m poster |0 PUB:(DE-HGF)24 |s 1454336215_19483 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
| 336 | 7 | _ | |a Output Types/Conference Poster |2 DataCite |
| 336 | 7 | _ | |a conferenceObject |2 DRIVER |
| 336 | 7 | _ | |a CONFERENCE_POSTER |2 ORCID |
| 336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
| 520 | _ | _ | |a Magnetoelectric coupling can arise in intrinsic multiferroics as well as composites. We will outline how for intrinsic BiFeO3 nanoparticles yield different magnetoelectric properties at room temperature than larger grains or bulk material. Magnetoelectric nanoscale composites of BaTiO3 and CoFe2O4 display rather poor magnetoelectric coupling macroscopically. Their micron scale counterparts on the other hand yield nice macroscopic response. The mechanical, electrical, and magnetic effects are analyzed using techniques including Mössbauer spectroscopy, magnetic force microscopy, piezoforce microscopy, and macroscopic techniques. It will be shown that microscopic coupling is strong also for (partly) conducting magnetic inclusions and nanosystems while macroscopic properties are highly dependent on good insulation of the samples. Experimental asymmetries in determining the magnetoelectric coupling coefficient are discussed. Support via FP7 Marie Curie Initial Training Network *Nanomotion* (grant n∘ 290158) & Forschergruppe 1509 are acknowledged. |
| 536 | _ | _ | |a 522 - Controlling Spin-Based Phenomena (POF3-522) |0 G:(DE-HGF)POF3-522 |c POF3-522 |f POF III |x 0 |
| 700 | 1 | _ | |a Wende, H. |0 P:(DE-HGF)0 |b 1 |
| 700 | 1 | _ | |a Schröder, J. |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Labusch, M. |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Etier, M. |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Nazrabi, A. |0 P:(DE-HGF)0 |b 5 |
| 700 | 1 | _ | |a Anusca, I. |0 P:(DE-HGF)0 |b 6 |
| 700 | 1 | _ | |a Trivedi, H. |0 P:(DE-HGF)0 |b 7 |
| 700 | 1 | _ | |a Gao, Y. |0 P:(DE-Juel1)161317 |b 8 |u fzj |
| 700 | 1 | _ | |a Escobar, M. |0 P:(DE-HGF)0 |b 9 |
| 700 | 1 | _ | |a Shvartsman, V. V. |0 P:(DE-HGF)0 |b 10 |
| 700 | 1 | _ | |a Landers, J. |0 P:(DE-HGF)0 |b 11 |
| 700 | 1 | _ | |a Salamon, S. |0 P:(DE-HGF)0 |b 12 |
| 700 | 1 | _ | |a Schmitz-Antoniak, C. |0 P:(DE-Juel1)162347 |b 13 |u fzj |
| 909 | C | O | |o oai:juser.fz-juelich.de:281712 |p VDB |
| 910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)161317 |
| 910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 13 |6 P:(DE-Juel1)162347 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-522 |2 G:(DE-HGF)POF3-500 |v Controlling Spin-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
| 914 | 1 | _ | |y 2015 |
| 915 | _ | _ | |a No Authors Fulltext |0 StatID:(DE-HGF)0550 |2 StatID |
| 920 | 1 | _ | |0 I:(DE-Juel1)PGI-6-20110106 |k PGI-6 |l Elektronische Eigenschaften |x 0 |
| 980 | _ | _ | |a poster |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)PGI-6-20110106 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|