001     281761
005     20210129221838.0
024 7 _ |a 10.1140/epje/i2016-16011-0
|2 doi
024 7 _ |a 1292-8941
|2 ISSN
024 7 _ |a 1292-895X
|2 ISSN
024 7 _ |a WOS:000369330800004
|2 WOS
037 _ _ |a FZJ-2016-01443
082 _ _ |a 530
100 1 _ |a Kondrat, Svyatoslav
|0 P:(DE-Juel1)159264
|b 0
|e Corresponding author
245 _ _ |a Discrete-continuous reaction-diffusion model with mobile point-like sources and sinks
260 _ _ |a Berlin
|c 2016
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1482227002_9856
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In many applications in soft and biological physics, there are multiple time and length scales involved but often with a distinct separation between them. For instance, in enzyme kinetics, enzymes are relatively large, move slowly and their copy numbers are typically small, while the metabolites (being transformed by these enzymes) are often present in abundance, are small in size and diffuse fast. It seems thus natural to apply different techniques to different time and length levels and couple them. Here we explore this possibility by constructing a stochastic-deterministic discrete-continuous reaction-diffusion model with mobile sources and sinks. Such an approach allows in particular to separate different sources of stochasticity. We demonstrate its application by modelling enzyme-catalysed reactions with freely diffusing enzymes and a heterogeneous source of metabolites. Our calculations suggest that using a higher amount of less active enzymes, as compared to fewer more active enzymes, reduces the metabolite pool size and correspondingly the lag time, giving rise to a faster response to external stimuli. The methodology presented can be extended to more complex systems and offers exciting possibilities for studying problems where spatial heterogeneities, stochasticity or discreteness play a role.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
536 _ _ |a 583 - Innovative Synergisms (POF3-583)
|0 G:(DE-HGF)POF3-583
|c POF3-583
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Zimmermann, Olav
|0 P:(DE-Juel1)132307
|b 1
700 1 _ |a Wiechert, Wolfgang
|0 P:(DE-Juel1)129076
|b 2
700 1 _ |a von Lieres, Eric
|0 P:(DE-Juel1)129081
|b 3
773 _ _ |a 10.1140/epje/i2016-16011-0
|g Vol. 39, no. 1, p. 11
|0 PERI:(DE-600)2004003-9
|n 1
|p 11
|t The @European physical journal / E
|v 39
|y 2016
|x 1292-8941
856 4 _ |u https://juser.fz-juelich.de/record/281761/files/art_10.1140_epje_i2016-16011-0.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/281761/files/art_10.1140_epje_i2016-16011-0.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/281761/files/art_10.1140_epje_i2016-16011-0.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/281761/files/art_10.1140_epje_i2016-16011-0.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/281761/files/art_10.1140_epje_i2016-16011-0.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/281761/files/art_10.1140_epje_i2016-16011-0.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:281761
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)159264
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)132307
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129076
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129081
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-583
|2 G:(DE-HGF)POF3-500
|v Innovative Synergisms
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EUR PHYS J E : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-1-20101118
|k IBG-1
|l Biotechnologie
|x 0
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-1-20101118
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)JSC-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21