000281762 001__ 281762
000281762 005__ 20240711085637.0
000281762 0247_ $$2doi$$a10.1016/j.surfcoat.2016.01.026
000281762 0247_ $$2ISSN$$a0257-8972
000281762 0247_ $$2ISSN$$a1879-3347
000281762 0247_ $$2WOS$$aWOS:000371549200025
000281762 037__ $$aFZJ-2016-01444
000281762 041__ $$aEnglish
000281762 082__ $$a620
000281762 1001_ $$0P:(DE-Juel1)136662$$aKeuter, Thomas$$b0$$eCorresponding author
000281762 245__ $$aAtomic-layer-controlled deposition of TEMAZ/O2–ZrO2 oxidation resistance inner surface coatings for solid oxide fuel cells
000281762 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2016
000281762 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1454336394_19488
000281762 3367_ $$2DataCite$$aOutput Types/Journal article
000281762 3367_ $$00$$2EndNote$$aJournal Article
000281762 3367_ $$2BibTeX$$aARTICLE
000281762 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000281762 3367_ $$2DRIVER$$aarticle
000281762 520__ $$aSolid oxide fuel cells (SOFCs) directly convert the chemical energy of fuels into electrical energy with high efficiency. Under certain conditions oxygen can diffuse to the Ni/8 mol% Y2O3-doped ZrO2 substrate of anode-supported SOFCs, then the nickel re-oxidizes, leading to cracks in the electrolyte and cell failure thus limiting the durability of SOFCs. In order to improve the stability of SOFCs with respect to oxidation, the inner surface of the porous substrate is coated with a ZrO2 oxidation resistance layer using atomic layer deposition (ALD) with the precursors tetrakis(ethylmethylamino)zirconium (TEMAZ) and molecular oxygen. This TEMAZ/O2–ZrO2 ALD process has not yet been reported in the literature and hence, the development of the process is described in this paper. The inner surface of the porous substrate is coated with ZrO2 and the film thickness is compared with theoretical predictions, verifying the ALD model. Furthermore, the coating depth can be estimated using a simple analytical equation. The ALD ZrO2 film protects the nickel in the substrate against oxidation for at least 17 re-oxidation/re-reduction cycles. The ZrO2 inner surface coating is a highly promising candidate for enhancing the resistance of SOFCs to re-oxidation because of the excellent oxidation resistance and good cycling stability of the film.
000281762 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000281762 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x1
000281762 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x2
000281762 588__ $$aDataset connected to CrossRef
000281762 7001_ $$0P:(DE-Juel1)129633$$aMauer, Georg$$b1$$eCorresponding author
000281762 7001_ $$0P:(DE-Juel1)129671$$aVondahlen, Frank$$b2$$ufzj
000281762 7001_ $$0P:(DE-HGF)0$$aIskandar, Riza$$b3
000281762 7001_ $$0P:(DE-Juel1)129636$$aMenzler, Norbert H.$$b4$$ufzj
000281762 7001_ $$0P:(DE-Juel1)129670$$aVassen, Robert$$b5
000281762 773__ $$0PERI:(DE-600)1502240-7$$a10.1016/j.surfcoat.2016.01.026$$gVol. 288, p. 211 - 220$$p211 - 220$$tSurface and coatings technology$$v288$$x0257-8972$$y2016
000281762 8564_ $$uhttps://juser.fz-juelich.de/record/281762/files/1-s2.0-S0257897216300263-main.pdf$$yRestricted
000281762 8564_ $$uhttps://juser.fz-juelich.de/record/281762/files/1-s2.0-S0257897216300263-main.gif?subformat=icon$$xicon$$yRestricted
000281762 8564_ $$uhttps://juser.fz-juelich.de/record/281762/files/1-s2.0-S0257897216300263-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000281762 8564_ $$uhttps://juser.fz-juelich.de/record/281762/files/1-s2.0-S0257897216300263-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000281762 8564_ $$uhttps://juser.fz-juelich.de/record/281762/files/1-s2.0-S0257897216300263-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000281762 8564_ $$uhttps://juser.fz-juelich.de/record/281762/files/1-s2.0-S0257897216300263-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000281762 909CO $$ooai:juser.fz-juelich.de:281762$$pVDB
000281762 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136662$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000281762 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129633$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000281762 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129671$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000281762 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)164340$$aExternal Institute$$b3$$kExtern
000281762 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129636$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000281762 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129670$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000281762 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000281762 9141_ $$y2016
000281762 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000281762 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000281762 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSURF COAT TECH : 2014
000281762 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000281762 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000281762 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000281762 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000281762 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000281762 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000281762 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000281762 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000281762 920__ $$lyes
000281762 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000281762 980__ $$ajournal
000281762 980__ $$aVDB
000281762 980__ $$aUNRESTRICTED
000281762 980__ $$aI:(DE-Juel1)IEK-1-20101013
000281762 981__ $$aI:(DE-Juel1)IMD-2-20101013