001     281762
005     20240711085637.0
024 7 _ |a 10.1016/j.surfcoat.2016.01.026
|2 doi
024 7 _ |a 0257-8972
|2 ISSN
024 7 _ |a 1879-3347
|2 ISSN
024 7 _ |a WOS:000371549200025
|2 WOS
037 _ _ |a FZJ-2016-01444
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a Keuter, Thomas
|0 P:(DE-Juel1)136662
|b 0
|e Corresponding author
245 _ _ |a Atomic-layer-controlled deposition of TEMAZ/O2–ZrO2 oxidation resistance inner surface coatings for solid oxide fuel cells
260 _ _ |a Amsterdam [u.a.]
|c 2016
|b Elsevier Science
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1454336394_19488
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Solid oxide fuel cells (SOFCs) directly convert the chemical energy of fuels into electrical energy with high efficiency. Under certain conditions oxygen can diffuse to the Ni/8 mol% Y2O3-doped ZrO2 substrate of anode-supported SOFCs, then the nickel re-oxidizes, leading to cracks in the electrolyte and cell failure thus limiting the durability of SOFCs. In order to improve the stability of SOFCs with respect to oxidation, the inner surface of the porous substrate is coated with a ZrO2 oxidation resistance layer using atomic layer deposition (ALD) with the precursors tetrakis(ethylmethylamino)zirconium (TEMAZ) and molecular oxygen. This TEMAZ/O2–ZrO2 ALD process has not yet been reported in the literature and hence, the development of the process is described in this paper. The inner surface of the porous substrate is coated with ZrO2 and the film thickness is compared with theoretical predictions, verifying the ALD model. Furthermore, the coating depth can be estimated using a simple analytical equation. The ALD ZrO2 film protects the nickel in the substrate against oxidation for at least 17 re-oxidation/re-reduction cycles. The ZrO2 inner surface coating is a highly promising candidate for enhancing the resistance of SOFCs to re-oxidation because of the excellent oxidation resistance and good cycling stability of the film.
536 _ _ |a 135 - Fuel Cells (POF3-135)
|0 G:(DE-HGF)POF3-135
|c POF3-135
|f POF III
|x 0
536 _ _ |a SOFC - Solid Oxide Fuel Cell (SOFC-20140602)
|0 G:(DE-Juel1)SOFC-20140602
|c SOFC-20140602
|f SOFC
|x 1
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 2
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Mauer, Georg
|0 P:(DE-Juel1)129633
|b 1
|e Corresponding author
700 1 _ |a Vondahlen, Frank
|0 P:(DE-Juel1)129671
|b 2
|u fzj
700 1 _ |a Iskandar, Riza
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Menzler, Norbert H.
|0 P:(DE-Juel1)129636
|b 4
|u fzj
700 1 _ |a Vassen, Robert
|0 P:(DE-Juel1)129670
|b 5
773 _ _ |a 10.1016/j.surfcoat.2016.01.026
|g Vol. 288, p. 211 - 220
|0 PERI:(DE-600)1502240-7
|p 211 - 220
|t Surface and coatings technology
|v 288
|y 2016
|x 0257-8972
856 4 _ |u https://juser.fz-juelich.de/record/281762/files/1-s2.0-S0257897216300263-main.pdf
|y Restricted
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/281762/files/1-s2.0-S0257897216300263-main.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/281762/files/1-s2.0-S0257897216300263-main.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/281762/files/1-s2.0-S0257897216300263-main.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/281762/files/1-s2.0-S0257897216300263-main.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/281762/files/1-s2.0-S0257897216300263-main.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:281762
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)136662
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129633
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129671
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-Juel1)164340
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129636
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129670
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SURF COAT TECH : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21